Find a Research Lab

Enter a research interest, principal investigator or keyword

Displaying 1 to 50 of 62 results for imaging

Show: 10 · 20 · 50

  1. 1
  2. 2
  • Advanced Optics Lab

    The Advanced Optics Lab uses innovative optical tools, including laser-based nanotechnologies, to understand cell motility and the regulation of cell shape. We pioneered laser-based nanotechnologies, including optical tweezers, nanotracking, and laser-tracking microrheology. Applications range from physics, pharmaceutical delivery by phagocytosis (cell and tissue engineering), bacterial pathogens important in human disease and cell division.

    Other projects in the lab are related to microscopy, specifically combining fluorescence and electron microscopy to view images of the subcellular structure around proteins.

    Research Areas: optics, microscopy, physics, cellular biology, imaging, nanotechnology, drugs, tissue engineering

    Lab Website

    Principal Investigator

    Scot Kuo, Ph.D.

    Department

    Biomedical Engineering

  • Ami Shah Lab

    Researchers in the Ami Shah Lab study scleroderma and Raynaud’s phenomenon. We examine the relationship between cancer and scleroderma, with a focus on how and if cancer causes scleroderma to develop in some patients. We are currently conducting clinical research to study ways to detect cardiopulmonary complications in patients with scleroderma, biological and imaging markers of Raynaud’s phenomenon, and drugs that improve aspects of scleroderma.

    Research Areas: Raynaud's phenomenon, cancer, scleroderma, drugs, cardiovascular diseases

    Lab Website

    Principal Investigator

    Ami Shah, M.D.

    Department

    Medicine

  • Andrew Laboratory: Center for Cell Dynamics

    Researchers in the Center for Cell Dynamics study spatially and temporally regulated molecular events in living cells, tissues and organisms. The team develops and applies innovative biosensors and imaging techniques to monitor dozens of critical signaling pathways in real time. The new tools help them investigate the fundamental cellular behaviors that underlie embryonic development, wound healing, cancer progression, and functions of the immune and nervous systems.

    Research Areas: immunology, cancer, epithelial tube, nervous system, molecular biology

    Lab Website

    Principal Investigator

    Deborah Andrew, M.S., Ph.D.

    Department

    Cell Biology

  • Ashikaga Lab

    We specialize in unconventional, multi-disciplinary approaches to studying the heart at the intersection of applied mathematics, physics and computer science. We focus on theory development that leads to new technology and value delivery to the society. Currently we have three research programs:

    1. Precision Medicine
    To develop a quantitative approach to personalized risk assessment for stroke and dementia based on patent-specific heart anatomy, function and blood flow.
    Disciplines: Cardiac Hemodynamics; Medical Imaging Physics; Continuum Mechanics; Computational Fluid Dynamics

    2. Information Theory
    To quantify and perturb cardiac fibrillation that emerges as a macro-scale behavior of the heart from micro-scale behaviors of inter-dependent components.
    Disciplines: Cardiac Electrophysiology; Spiral Wave; Information Theory; Complex Networks

    3. Artificial Intelligence
    To develop artificial intelligence algorithms to predict the future risk of heart attack, stroke and sudden... death, and to assist surgical interventions to prevent these outcomes.
    Disciplines: Medical Imaging Physics; Artificial Intelligence; Robotically Assisted Interventions
    view less

    Research Areas: complex systems, Computational Fluid Dynamics, spiral wave, artificial intelligence, informational theory

  • Ashish Nimgoankar Lab

    The Ashish Nimgoankar Lab is interested in translational technology development and image-guided therapies.

    Research Areas: translational technology, imaging

    Principal Investigator

    Ashish Nimgaonkar, M.B.B.S., M.D., M.S.

    Department

    Medicine

  • Biophotonics Imaging Technologies (BIT) Laboratory

    Research in the Biophotonics Imaging Technologies (BIT) Laboratory focuses on developing optical imaging and nano-biophotonics technology to reduce the random sampling errors in clinical diagnosis, improve early disease detection and guidance of biopsy and interventions, and improve targeted therapy and monitoring treatment outcomes. The imaging technologies feature nondestructiveness, unique functional and molecular specificity, and multi-scale resolution (from organ, to architectural morphology, cellular, subcellular and molecular level). The nano-biophotonics technologies emphasize heavily on biocompatibility, multi-function integration and fast track clinical translation. These imaging and nano-biophotonics technologies can also be potentially powerful tools for basic research such as for drug screening, nondestructive assessment of engineered biomaterials in vitro and in vivo, and for studying brain functions on awake animals under normal or controlled social conditions.

    Research Areas: drug screening, imaging, brain, nano-biophotonics

    Lab Website

    Principal Investigator

    Xingde Li, Ph.D.

    Department

    Biomedical Engineering

  • Brady Maher Laboratory

    The Brady Maher Laboratory is interested in understanding the cellular and circuit pathophysiology that underlies neurodevelopmental and psychiatric disorders. Our lab focuses on trying to understand the function of genes that are associated with neurodevelopment problems by manipulating their expression level in utero during the peak of cortical development. We then use a variety of approaches and technologies to identify resulting phenotypes and molecular mechanisms including cell and molecular biology, optogenetics, imaging and electrophysiology.

    Current projects in the lab are focused on understanding the function of transcription factor 4 (TCF4), a clinically pleiotropic gene. Genome-wide association studies have identified genetic variants of TCF4 that are associated with schizophrenia, while autosomal dominant mutations in TCF4 result in Pitt Hopkins syndrome. Using our model system, we have identified several interesting electrophysiological and cell biological phenotypes as...sociated with altering the expression of TCF4 in utero. We hypothesize that these phenotypes represent cellular pathophysiology related to these disorders and by understanding the molecular mechanisms responsible for these phenotypes we expect to identify therapeutic targets for drug development.
    view more

    Research Areas: cell biology, neurodevelopment, imaging, schizophrenia, psychiatric disorders, Pitt Hopkins syndrome, elecrophysiology, genomics, drugs, optogenetics, molecular biology, phenotypes

  • Cammarato Lab

    The Cammarato Lab is located in the Division of Cardiology in the Department of Medicine at the Johns Hopkins University School of Medicine. We are interested in basic mechanisms of striated muscle biology.

    We employ an array of imaging techniques to study “structural physiology” of cardiac and skeletal muscle. Drosophila melanogaster, the fruit fly, expresses both forms of striated muscle and benefits greatly from powerful genetic tools. We investigate conserved myopathic (muscle disease) processes and perform hierarchical and integrative analysis of muscle function from the level of single molecules and macromolecular complexes through the level of the tissue itself.

    Anthony Ross Cammarato, MD, is an assistant professor of medicine in the Cardiology Department. He studies the identification and manipulation of age- and mutation-dependent modifiers of cardiac function, hierarchical modeling and imaging of contractile machinery, integrative analysis of striated muscle performan...ce and myopathic processes. view more

    Research Areas: muscle development, genetics, myopathic processes, striated muscle biology, muscle function, myopathy, muscle physiology

    Lab Website

    Principal Investigator

    Anthony Cammarato, Ph.D.

    Department

    Medicine

  • Cardiology Bioengineering Laboratory

    The Cardiology Bioengineering Laboratory, located in the Johns Hopkins Hospital, focuses on the applications of advanced imaging techniques for arrhythmia management. The primary limitation of current fluoroscopy-guided techniques for ablation of cardiac arrhythmia is the inability to visualize soft tissues and 3-dimensional anatomic relationships.

    Implementation of alternative advanced modalities has the potential to improve complex ablation procedures by guiding catheter placement, visualizing abnormal scar tissue, reducing procedural time devoted to mapping, and eliminating patient and operator exposure to radiation.

    Active projects include
    • Physiological differences between isolated hearts in ventricular fibrillation and pulseless electrical activity
    • Successful ablation sites in ischemic ventricular tachycardia in a porcine model and the correlation to magnetic resonance imaging (MRI)
    • MRI-guided radiofrequency ablation of canine atrial fibrillation, and ...diagnosis and intervention for arrhythmias
    • Physiological and metabolic effects of interruptions in chest compressions during cardiopulmonary resuscitation

    Henry Halperin, MD, is co-director of the Johns Hopkins Imaging Institute of Excellence and a
    professor of medicine, radiology and biomedical engineering. Menekhem M. Zviman, PhD is the laboratory manager.
    view less

    Research Areas: magnetic resonance imaging, CPR models, cardiac mechanics, MRI-guided therapy, ischemic tachycardia, arrhythmia, cardiology, sudden cardiac death, cardiopulmonary resuscitation, computational modeling

    Lab Website

    Principal Investigator

    Henry Halperin, M.D.

    Department

    Medicine

  • Center for Infection and Inflammation Imaging Research

    In conjunction with the Molecular Imaging Center, the Center for Infection and Inflammation Imaging Research core provides state-of-the art small animal imaging equipment, including PET, SPECT, CT and US, to support the wide range of scientific projects within the diverse research community of the Johns Hopkins University and beyond. Trained technologists assist investigators in the use of these facilities.

    Research Areas: infectious disease, imaging, inflammation

    Lab Website

    Principal Investigator

    Sanjay Jain, M.B.B.S.

    Department

    Medicine

  • Center for Research on Cardiac Intermediate Filaments

    The CRCIF was established to foster collaborative efforts aimed at elucidating the role of intermediate filaments (IFs) in the heart. Intermediate filaments constitute a class of cytoskeletal proteins in metazoan cells, however, different from actin microfilaments and tubulin microtubules, their function in cardiac cells is poorly understood. Unique from the other two components of the cytoskeleton, IFs are formed by cell type-specific proteins. Desmin is the main component of the IFs in the cardiac myocytes. We measured the consistent induction of desmin post-translational modifications (PTMs, such as phosphorylation, etc.) in various clinical and experimental models of heart failure. Therefore, one of our main focuses is to determine the contribution of desmin PTMs to the development of heart failure in different animal and clinical models.

    Active Projects:

    • Quantification of desmin PTM-forms in different forms of heart failure at the peptide level using mass spectrometry
    • F...unctional assessment of the role of desmin PTMs in heart failure development using single site mutagenesis and biophysical methods
    • Molecular characterization of desmin preamyloid oligomers using mass spectrometry, in vitro and in vivo imaging
    • Assessment of the diagnostic and pharmacological value of desmin PTMs in heart failure development
    view less

    Research Areas: heart failure, intermediate filaments

    Lab Website

    Principal Investigator

    Giulio Agnetti, Ph.D.

    Department

    Medicine

  • Clifton O. Bingham III Lab

    Research in the Clifton O. Bingham III Lab focuses on defining clinical and biochemical disease phenotypes related to therapeutic responses in rheumatoid arthritis and osteoarthritis; developing rational clinical trial designs to test new treatments; improving patient-reported outcome measures; evaluating novel imaging modalities for arthritis; and examining the role of oral health in inflammatory arthritis.

    Research Areas: biochemistry, imaging, osteoarthritis, clinical trials, inflammation, oral health, rheumatoid arthritis

    Principal Investigator

    Clifton O. Bingham, M.D.

    Department

    Medicine

  • CORE-320 Multicenter Trial Lab

    The central theme of the CORE-320 Multicenter Trial Lab’s research is to support the Coronary Artery Evaluation Using 320-Row Multidetector CT Angiography (CORE 320) study, a multi-center multinational diagnostic study with the primary objective to evaluate the diagnostic accuracy of 320-MDCT for detecting coronary artery luminal stenosis and corresponding myocardial perfusion deficits in patients with suspected CAD compared with the reference standard of conventional coronary angiography and SPECT myocardial perfusion imaging.

    Armin Arbab-Zadeh, MD, PhD, is an associate professor of medicine at the Johns Hopkins University School of Medicine and Director of Cardiac Computed Tomography in the Division of Cardiology at the Johns Hopkins Hospital in Baltimore.

    Research Areas: coronary/cardiac imaging, coronary risk prediction, heart attack prevention, cardiac computed tomography, coronary circulation and disease

    Research Areas: cardiac imaging, cardiac computing tomography, coronary risk prediction, heart attack prevention

    Principal Investigator

    Armin Arbab-Zadeh, M.D., M.P.H., Ph.D.

    Department

    Medicine

  • Dara Kraitchman Laboratory

    The Dara Kraitchman Laboratory focuses on non-invasive imaging and minimally invasive treatment of cardiovascular disease. Our laboratory is actively involved in developing new methods to image myocardial function and perfusion using MRI. Current research interests are aimed at determining the optimal timing and method of the administration of mesenchymal stem cells to regenerate infarcted myocardium using non-invasive MR fluoroscopic delivery and imaging. MRI and radiolabeling techniques include novel MR and radiotracer stem cell labeling methods to determine the location, quantity and biodistribution of stem cells after delivery as well as to noninvasively determine the efficacy of these therapies in acute myocardial infarction and peripheral arterial disease.

    Our other research focuses on the development of new animal models of human disease for noninvasive imaging studies and the development of promising new therapies in clinical trials for companion animals.

    Research Areas: imaging, cardioavascular, radiology, MRI, cardiomyopathy

  • Dmitri Artemov Lab

    The Artemov lab is within the Division of Cancer Imaging Research in the Department of Radiology and Radiological Science. The lab focuses on 1) Use of advanced dynamic contrast enhanced-MRI and activated dual-contrast MRI to perform image-guided combination therapy of triple negative breast cancer and to assess therapeutic response. 2) Development of noninvasive MR markers of cell viability based on a dual-contrast technique that enables simultaneous tracking and monitoring of viability of transplanted stems cells in vivo. 3) Development of Tc-99m and Ga-68 angiogenic SPECT/PET tracers to image expression of VEGF receptors that are involved in tumor angiogenesis and can be important therapeutic targets. 4) Development of the concept of “click therapy” that combines advantages of multi-component targeting, bio-orthogonal conjugation and image guidance and preclinical validation in breast and prostate cancer models.

    Research Areas: VEGF receptors image expression, SPECT/PET tracers, tracking stem cells in vivo, triple-negative breast cancer, image-guided combination therapy, MRI, noninvasive MR markers, cancer imaging

  • Elizabeth Tucker Lab

    Research in the Elizabeth Tucker Lab aims to find treatments that decrease neuroinflammation and improve recovery, as well as to improve morbidity and mortality in patients with infectious neurological diseases. We are currently working with Drs. Sujatha Kannan and Sanjay Jain to study neuroinflammation related to central nervous system tuberculosis – using an animal model to examine the role of neuroinflammation in this disease and how it can differ in developing brains and adult brains. Our team also is working with Dr. Jain to study noninvasive imaging techniques for use in monitoring disease progression and evaluating treatment responses.

    Research Areas: infectious disease, imaging, neuroinflammation, morbidity, tuberculosis

  • Frueh Laboratory

    The Frueh Laboratory uses nuclear magnetic resonance (NMR) to study how protein dynamics can be modulated and how active enzymatic systems can be conformed. Non-ribosomal peptide synthetases (NRPS) are large enzymatic systems that biosynthesize secondary metabolites, many of which are used by pharmaceutical scientists to produce drugs such as antibiotics or anticancer agents. Dr. Frueh's laboratory uses NMR to study inter- and intra-domain modifications that occur during the catalytic steps of NRPS. Dr. Frueh and his team are constantly developing new NMR techniques to study these complicated enzymatic systems.

    Research Areas: enzymes, proteomics, imaging, drugs, antibiotics, nuclear magnetic resonance, molecular biology

  • Gregory Kirk Lab

    Research in the Gregory Kirk Lab examines the natural history of viral infections — particularly HIV and hepatitis viruses — in the U.S. and globally. As part of the ALIVE (AIDS Linked to the Intravenous Experience) study, our research looks at a range of pathogenetic, clinical behavioral issues, with a special focus on non-AIDS-related outcomes of HIV, including cancer and liver and lung diseases. We use imaging and clinical, genetic, epigenetic and proteomic methods to identify and learn more about people at greatest risk for clinically relevant outcomes from HIV, hepatitis B and hepatitis C infections. Our long-term goal is to translate our findings into targeted interventions that help reduce the disease burden of these infections.

    Research Areas: global health, Hepatitis, Africa, AIDS, cancer, HIV, drugs, liver diseases

    Principal Investigator

    Gregory Kirk, M.D., M.P.H., Ph.D.

    Department

    Medicine

  • Health Technologies

    The APL Health Technologies program's functional restoration focus area includes two portfolios with particular relevance in neurology. The first focuses on motor restoration, using teams with expertise in robotics, microsensors, haptics, artificial intelligence and brain-machine interfaces. One set of projects, currently sponsored by Defense Advanced Research Projects Agency (DARPA) and the Henry Jackson Foundation, centers on a bionic arm technology that integrates with bone and muscle in amputee patients, restoring a variety of normal functions to the patient like cooking, folding clothing, hand shaking, and hand gestures. This portfolio explores direct brain control of the bionic limb, through work led by Dr. Nathan Crone of Johns Hopkins Neurology and Dr. Pablo Celnik of Johns Hopkins Physical Medicine and Rehabilitation. Another set of related work aims to restore motor function by better understanding and using brain signals through brain-machine interfaces. This work is current...ly funded by the National Science Foundation and industry partners. Also in the functional restoration focus area is the vision restoration portfolio. In a partnership with Second Sight and the Mann Fund, the work aims to enhance function of a bionic eye, which couples a retinal implant with a computer vision system to restore vision in blind individuals with retinitis pigmentosa. Current work in the human-machine teaming focus area includes a portfolio that is building artificial intelligence systems that improve radiologic and ophthalmic diagnostics. Another portfolio, currently focused in the surgical setting, enhances the physician's ability to visualize and manipulate the physical world, such as with orthopaedic surgery. view more

    Research Areas: robotics, imaging systems, machine learning, data fusion, artificial intelligence

    Lab Website

    Principal Investigator

    Adam Cohen, M.D.

    Department

    Neurology

  • Healthy Brain Program

    The Brain Health Program is a multidisciplinary team of faculty from the departments of neurology, psychiatry, epidemiology, and radiology lead by Leah Rubin and Jennifer Coughlin. In the hope of revealing new directions for therapies, the group studies molecular biomarkers identified from tissue and brain imaging that are associated with memory problems related to HIV infection, aging, dementia, mental illness and traumatic brain injury. The team seeks to advance policies and practices to optimize brain health in vulnerable populations while destigmatizing these brain disorders.

    Current and future projects include research on: the roles of the stress response, glucocorticoids, and inflammation in conditions that affect memory and the related factors that make people protected or or vulnerable to memory decline; new mobile apps that use iPads to improve our detection of memory deficits; clinical trials looking at short-term effects of low dose hydrocortisone and randomized to 28 day...s of treatment; imaging brain injury and repair in NFL players to guide players and the game; and the role of inflammation in memory deterioration in healthy aging, patients with HIV, and other neurodegenerative conditions. view less

    Research Areas: HIV infection, mental illness, aging, traumatic brain injury, dementia

  • Hey-Kyoung Lee Lab

    The Hey-Kyoung Lee Lab is interested in exploring the cellular and molecular changes that happen at synapses to allow memory storage. We use various techniques, including electrophysiological recording, biochemical and molecular analysis, and imaging, to understand the cellular and molecular changes that happen during synaptic plasticity.

    Currently, we are examining the molecular and cellular mechanisms of global homeostatic synaptic plasticity using sensory cortices as model systems. In particular, we found that loss of vision elicits global changes in excitatory synaptic transmission in the primary visual cortex. Vision loss also triggers specific synaptic changes in other primary sensory cortices, which we postulate underlies sensory compensation in the blind. One of our main research goals is to understand the mechanisms underlying such cross-modal synaptic plasticity.

    We are also interested in elucidating the events that occur in diseased brains. In collaboration with othe...r researchers, we are analyzing various mouse models of Alzheimer's disease, especially focusing on the possible alterations in synaptic plasticity mechanisms.
    view more

    Research Areas: biochemistry, synaptic plasticity, memory, imaging, vision, molecular biology, Alzheimer's disease

    Principal Investigator

    Hey-Kyoung Lee, Ph.D.

    Department

    Neuroscience

  • Huang Laboratory

    Our lab is interested in understanding the fundamental mechanisms of how cells move and implications in disease treatment. We use an interdisciplinary approach involving fluorescent live cell imaging, genetics, and computer modeling to study the systems level properties of the biochemical networks that drive cell migration.

    Research Areas: pathology

    Lab Website

    Principal Investigator

    Chuan-Hsiang Huang, M.D., Ph.D.

    Department

    Pathology

  • Imaging for Surgery, Therapy and Radiology (I-STAR) Lab

    The Imaging for Surgery, Therapy and Radiology (I-STAR) Lab is a collaborative research endeavor based in the Department of Biomedical Engineering at Johns Hopkins University. Research areas include: (1) Imaging physics: Mathematical models of imaging performance in advanced modalities, including cone-beam CT and spectral/dual-energy imaging, (2) 3-D image reconstruction: Advanced 3-D image reconstruction based on statistical models of the imaging chain and prior information, (3) Novel imaging systems: Preclinical prototypes translated from the laboratory to first application in diagnostic and interventional procedures, and(4) Image-guided interventions and diagnostic radiology: High-precision interventional guidance systems (for surgery, interventional radiology, and radiation therapy) and new technologies for high-quality diagnostic imaging.

    Research Areas: 3-D, physics, imaging, radiology, surgery, CT

  • Inoue Lab

    Complexity in signaling networks is often derived from co-opting one set of molecules for multiple operations. Understanding how cells achieve such sophisticated processing using a finite set of molecules within a confined space--what we call the "signaling paradox"--is critical to biology and engineering as well as the emerging field of synthetic biology.

    In the Inoue Lab, we have recently developed a series of chemical-molecular tools that allow for inducible, quick-onset and specific perturbation of various signaling molecules. Using this novel technique in conjunction with fluorescence imaging, microfabricated devices, quantitative analysis and computational modeling, we are dissecting intricate signaling networks.

    In particular, we investigate positive-feedback mechanisms underlying the initiation of neutrophil chemotaxis (known as symmetry breaking), as well as spatio-temporally compartmentalized signaling of Ras and membrane lipids such as phosphoinositides. In parallel,... we also try to understand how cell morphology affects biochemical pathways inside cells. Ultimately, we will generate completely orthogonal machinery in cells to achieve existing, as well as novel, cellular functions. Our synthetic, multidisciplinary approach will elucidate the signaling paradox created by nature. view more

    Research Areas: biochemistry, cell biology, chemotaxis, cancer, signaling paradox, signaling networks, molecular biology, synthetic biology

    Lab Website

    Principal Investigator

    Takanari Inoue, Ph.D.

    Department

    Cell Biology

  • In-vivo Cellular and Molecular Imaging Center

    The In-vivo Cellular and Molecular Imaging Center conducts multidisciplinary research on cellular and molecular imaging related to cancer. We provide resources, such as consultation on biostatistics and bioinformatics and optical imaging and probe development, to understand and effectively treat cancer. Our molecular oncology experts consult on preclinical studies, use of human tissues, interpretation of data and molecular characterization of cells and tumor tissue.

    Research Areas: optical imaging, molecular characterization of tumor tissue, bioinformatics, molecular oncology, biostatistics, probe development, molecular characterization of cells, cancer imaging

  • J. Webster Stayman Lab

    The J. Webster Stayman Lab studies both emission tomography and transmission tomography (CT, tomosynthesis and cone-beam CT). Our research activities relate to 3-D reconstruction, including model-based statistical / iterative reconstruction, regularization methods and modeling of imaging systems. We are developing a generalized framework for penalized likelihood (PL) reconstruction combining statistical models of noise and image formation with incorporation of prior information, including patient-specific prior images, atlases and models of components / devices known to be in the field of view. Our research includes algorithm development and physical experimentation for imaging system design and optimization.

    Research Areas: 3-D, imaging, emission tomography, transmission tomography, radiology, computed tomography

  • James Pekar Lab

    How do we see, hear, and think? More specifically, how can we study living people to understand how the brain sees, hears, and thinks? Recently, magnetic resonance imaging (MRI), a powerful anatomical imaging technique widely used for clinical diagnosis, was further developed into a tool for probing brain function. By sensitizing magnetic resonance images to the changes in blood oxygenation that occur when regions of the brain are highly active, we can make "movies" that reveal the brain at work. Dr. Pekar works on the development and application of this MRI technology.

    Dr. Pekar is a biophysicist who uses a variety of magnetic resonance techniques to study brain physiology and function. Dr. Pekar serves as Manager of the F.M. Kirby Research Center for Functional Brain Imaging, a research resource where imaging scientists and neuroscientists collaborate to study brain function using unique state-of-the-art techniques in a safe comfortable environment, to further develop such techni...ques, and to provide training and education. Dr. Pekar works with center staff to serve the center's users and to keep the center on the leading edge of technology.
    view more

    Research Areas: magnetic resonance, functional magnetic resonance imaging, radiology

  • Janet Record Lab

    Research in the Janet Record Lab focuses on medical education and patient-centered care. We’re currently developing a curriculum for internal medicine residents in the inpatient general medicine service setting. The curriculum teaches residents to use hand-carried ultrasound for imaging the inferior vena cava to assess volume status.

    Research Areas: medical education, patient-centered health care, imaging, internal medicine, inferior vena cava

    Principal Investigator

    Janet Record, M.D.

    Department

    Medicine

  • Jeff Bulte Lab

    The clinical development of novel immune and stem cell therapies calls for suitable methods that can follow the fate of cells non-invasively in humans at high resolution. The Bulte Lab has pioneered methods to label cells magnetically (using tiny superparamagnetic iron oxide nanoparticles) in order to make them visible by MR imaging.

    While the lab is doing basic bench-type research, there is a strong interaction with the clinical interventional radiology and oncology groups in order to bring the methodologies into the clinic.

    Research Areas: immunology, stem cells, cancer, MRI, interventional radiology

  • Jinyuan Zhou Lab

    Dr. Zhou's research focuses on developing new in vivo MRI and MRS methodologies to study brain function and disease. His most recent work includes absolute quantification of cerebral blood flow, quantification of functional MRI, high-resolution diffusion tensor imaging (DTI), magnetization transfer mechanism, development of chemical exchange saturation transfer (CEST) technology, brain pH MR imaging, and tissue protein MR imaging. Notably, Dr. Zhou and his colleagues invented the amide proton transfer (APT) approach for brain pH imaging and tumor protein imaging. His initial paper on brain pH imaging was published in Nature Medicine in 2003 and his most recent paper on tumor treatment effects was published in Nature Medicine in 2011. A major part of his current research is the pre-clinical and clinical imaging of brain tumors, strokes, and other neurologic disorders using the APT and other novel MRI techniques. The overall goal is to achieve the MRI contrast at the protein and peptide ...level without injection of exogenous agents and improve the diagnostic capability of MRI and the patient outcomes. view more

    Research Areas: magnetic resonance, functional magnetic resonance imaging, brain, stroke

  • Jon Russell Lab

    The Jon Russell lab focuses on thyroid and parathyroid pathology as well as improving patient safety and education using healthcare technology. Additional focuses include utilizing new technology to advance on the techniques of minimally invasive neck surgery. Current and previous efforts include the development of mobile and web-based applications to educate physicians and patients, utilizing ultrasound for vocal cord imaging, understanding the nuances of advanced thyroid cancer, and exploring the role of scarless thyroid surgery in a North American population.

    Research Areas: patient satisfaction, thyroid cancer, perioperative information delivery, health outcomes, otolaryngology, postoperative care, endocrinology

  • Jonathan Walsh Lab

    The Jonathan Walsh Lab is currently researching longitudinal trends of diagnostic and procedural utilization in pediatric patients with head and neck complaints.

    Research Areas: airway imaging, otolaryngology, pediatric robotic surgery, pediatrics, ultrasound

  • Karakousis Lab

    The Karakousis Lab is primarily focused on understanding the molecular basis of Mycobacterium tuberculosis persistence and antibiotic tolerance. A systems biology-based approach, including the use of several novel in vitro and animal models, in combination with transcriptional, proteomic, genetic, imaging, and computational techniques, is being used to identify host cytokine networks responsible for immunological control of M. tuberculosis growth, as well as M. tuberculosis regulatory and metabolic pathways required for bacillary growth restriction and reactivation. In particular, we are actively investigating the regulatory cascade involved in the mycobacterial stringent response. Another major focus of the lab is the development of host-directed therapies for TB, with the goal of shortening treatment and improving long-term lung function. Additional research interests include the development of novel molecular assays for the rapid diagnosis of latent TB infection and active TB diseas...e, and for the detection of drug resistance. view more

    Research Areas: diagnostics, persistence, infectious disease, Mycobacterium tuberculosis, host-directed therapy, latency, drugs, antibiotics, tuberculosis

    Lab Website

    Principal Investigator

    Petros Karakousis, M.D.

    Department

    Medicine

  • Kristina Nielsen Laboratory

    The Kristina Nielsen Laboratory investigates neural circuits in the visual cortex that are responsible for encoding objects to understand how the visual system performs object recognition. We aim to reveal the fine-scale organization of neural circuits, with an emphasis on higher-level visual areas. We use two-photon microscopy to perform high-resolution functional imaging of visual areas in the non-human primate. We also investigate how the function of higher visual areas changes over the course of brain development in ferrets, by measuring the activity of single neurons in these areas, as well as determining the animal's visual capabilities at various developmental stages. In both types of investigations, we also rely on detailed anatomical techniques to precisely observe how the function of neuronal circuits is related to their structure.

    Research Areas: neural circuits, neurons, imaging, vision, photon microscopy, object perception

    Lab Website

    Principal Investigator

    Kristina Nielsen, Ph.D.

    Department

    Neuroscience

  • Kristine Glunde Lab

    The Glunde lab is within the Division of Cancer Imaging Research in the Department of Radiology and Radiological Science. The lab is developing mass spectrometry imaging as part of multimodal molecular imaging workflows to image and elucidate hypoxia-driven signaling pathways in breast cancer. They are working to further unravel the molecular basis of the aberrant choline phospholipid metabolism in cancer. The Glunde lab is developing novel optical imaging agents for multi-scale molecular imaging of lysosomes in breast tumors and discovering structural changes in Collagen I matrices and their role in breast cancer and metastasis.

    Research Areas: breast cancer, mass spectrometry, imaging, cancer, metastasis, metabolism, optical imaging

  • Laboratory for Integrated NanoDiagnostics (LIND)

    The Laboratory for Integrated NanoDiagnostics (LIND) is developing innovative technologies for accurate, fast, compact, portable, manufacturable, low-cost diagnostics for a wide variety of applications. Our current focus is a large-scale collaboration with imec, a leading microelectronics company in Leuven, Belgium, where our silicon is designed and manufactured. With major funding from miDiagnostics we are inventing solutions that are opening new avenues.

    Research Areas: quantitative RT-PCR, in vitro diagnostics, surface chemistry, lens-free imaging, microfluidics, colorimetry, fluorimetry

    Principal Investigator

    Stuart Ray, M.D.

    Department

    Medicine

  • Lima Lab

    The Lima Lab’s research is concentrated on the development and application of imaging and technology to address scientific and clinical problems involving the heart and vascular system.

    Specifically, our research is focused on developing magnetic resonance imaging (MRI) contrast techniques to investigate microvascular function in patients and experimental animals with myocardial infarction; functional reserve secondary to dobutamine stimulation and myocardial viability assessed by sodium imaging; and cardiac MRI and computed tomography (CT) program development of techniques to characterize atherosclerosis in humans with cardiovascular or cerebrovascular disease.

    Current projects include:
    • The Coronary Artery Risk Development in Young Adults (CARDIA) Study
    • The MESA (Multi-Ethnic Study of Atherosclerosis) Study
    • The Coronary Artery Evaluation using 64-row Multidetector Computed Tomography Angiography (CORE64) Study

    Joao Lima, MD, is a professor of medicine, radiology and... epidemiology at the Johns Hopkins School of Medicine. view more

    Research Areas: magnetic resonance, cerebrovascular, imaging, cardiovascular, cardiology, atherosclerosis, computed tomography, vascular, myocardial infarction

    Lab Website

    Principal Investigator

    Joao Lima, M.B.A., M.D.

    Department

    Medicine

  • Marie-France Penet Lab

    The Penet lab is within the Division of Cancer Imaging Research in the Department of Radiology and Radiological Science. The lab research focuses on using multimodal imaging techniques to better understand the microenvironment and improve cancer early detection, especially in ovarian cancer. By combining MRI, MRS and optical imaging, we are studying the tumor microenvironment to understand the role of hypoxia, tumor vascularization, macromolecular transport and tumor metabolism in tumor progression, metastasis and ascites formation in orthotopic models of cancer. We also are studying the role of tumor-associated macrophages in tumor progression.

    Research Areas: tumor vascularization, prostate cancer, tumor metabolism, magnetic resonance spectroscopy, macromolecular transport, optical imaging, pancreatic cancer, MRI, tumor-associated macrophages, hypoxia, ovarian cancer, cancer-induced cachexia, cancer imaging

  • Martin G. Pomper Lab

    Recent advances in molecular and cellular biology, the emergence of more sophisticated animal models of human disease and the development of sensitive, high-resolution imaging systems enable the study of pathophysiology noninvasively in unprecedented detail. The overall goal of our work is to develop new techniques and agents to study human disease through imaging. We concentrate on two areas, i.e., cancer and central nervous system processes. Our work extends from basic chemical and radiochemical synthesis to clinical translation.

    Research Areas: imaging, cancer

    Lab Website

    Principal Investigator

    Martin Pomper, M.D., Ph.D.

    Department

    Radiology

  • Mary Beth Brady Lab

    Research in the Mary Beth Brady Lab focuses primarily on topics within the fields of anesthesiology, imaging and cardiology. Our work has explored transesophageal echocardiography simulation, echocardiography, cardiac and vascular-thoracic anesthesiology, and other areas within critical care medicine. A recent study involved obtaining 3-D images of the heart, which were then used to build computer programs to help cardiac surgeons improve their treatment of heart defects.

    Research Areas: critical care medicine, cardiac anesthesiology, imaging, transesophageal echocardiogram, anesthesiology, cardiology, echocardiography, vascular-thoracic anesthesiology

  • Medical Imaging Physics Laboratory

    The Division of Medical Imaging Physics conducts state-of-the-art research in medical imaging physics, particularly in the areas of nuclear medicine, including PET and SPECT, CT and X-ray imaging. Our research aims to advance instrumentation technologies, image reconstruction techniques and image processing and analysis methods that lead to improved quality and quantitative accuracy in radiological images for better clinical diagnosis and other biomedical applications.

    Research Areas: nuclear medicine, imaging, medical imaging physics, radiology, x-ray, computed tomography

  • Michael A. Jacobs Lab

    The Jacobs lab is within the Division of Cancer Imaging Research in the Department of Radiology and Radiological Science. The lab translates radiological imaging (MRI/PET/CT) from research to the clinical setting. The Jacobs lab is establishing the use of multi-parametric/multinuclear/modality imaging to monitor treatment response in different cancers and co-developed a new metric for DWI/ADC mapping to discern treatment response. They are developing and implementing a new method for diagnosis of cancer using machine and deep learning to measure different types of lesions. The Jacobs lab is also developing novel segmentation of radiological images using non-linear dimensionality reduction. In addition, we are investigating methods to integrate Radiomics and Informatics and prognostic markers for disease. Other research areas include diagnostic medical physics and novel computer science applications. The medical physics research includes MRI quality assessments, X-ray, fluoroscopy, ultr...asound and applications to therapeutic medical physics. We are developing a residency using the Commission on Accreditation of Medical Physics Education Program in Diagnostic Medical Physics. view more

    Research Areas: treatment response, PET/CT, prostate, cancer, metastasis, pancreatic disease, liver diseases, cancer imaging

  • Michael Caterina Lab

    The Caterina lab is focused on dissecting mechanisms underlying acute and chronic pain sensation. We use a wide range of approaches, including mouse genetics, imaging, electrophysiology, behavior, cell culture, biochemistry and neuroanatomy to tease apart the molecular and cellular contributors to pathological pain sensation. A few of the current projects in the lab focus on defining the roles of specific subpopulations of neuronal and non-neuronal cells to pain sensation, defining the role of RNA binding proteins in the development and maintenance of neuropathic pain, and understanding how rare skin diseases known as palmoplantar keratodermas lead to severe pain in the hands and feet.

    Research Areas: biophysics, biochemistry, proteomics, inflammation, pain

    Principal Investigator

    Michael Caterina, M.D., Ph.D.

    Department

    Neurosurgery

  • MRB Molecular Imaging Service Center and Cancer Functional Imaging Core

    Established in 2004, the MRB Molecular Imaging Service Center and Cancer Functional Imaging Core provides comprehensive molecular and functional imaging infrastructure to support the imaging research needs of the Johns Hopkins University faculty. Approximately 55-65 different Principal Investigators use the center annually.

    The MRB Molecular Imaging Service Center is located behind the barrier within the transgenic animal facility in the basement of MRB. The MRB location houses a 9.4T MRI/S scanner for magnetic resonance imaging and spectroscopy, an Olympus multiphoton microscope with in vivo imaging capability, a PET-CT scanner, a PET-SPECT scanner, and a SPECT-CT scanner for nuclear imaging, multiple optical imaging scanners including an IVIS Spectrum, and a LI COR near infrared scanner, and an ultrasound scanner.
    A brand new satellite facility in CRB2-LB03 opens in 2019 to house a simultaneous 7T PET-MR scanner, as well as additional imaging equipment, to meet the growing molec...ular and functional imaging research needs of investigators.

    To image with us, MRB Animal Facility training and Imaging Center Orientation are required to obtain access to the MRB Animal Facility and to the MRB Molecular Imaging Center (Suite B14). The MRB Animal Facility training group meets at 9:30 am on Thursdays at the Turner fountain/MRB elevator lobby. The Imaging Center orientation group meets at 1 pm on Thursdays at the Turner fountain, and orientation takes approximately 30 min. Please keep in mind that obtaining access to both facilities requires time, so please plan in advance.
    view less

    Research Areas: cancer research, radiology, Radiological Science

  • Neuroimaging and Modulation Laboratory (NIMLAB)

    The neuroimaging and Modulation Laboratory (NIMLAB) investigates neural correlates of cognition and behavior using neuroimaging methods such as functional magnetic resonance imaging (fMRI) and neuromodulation techniques such as transcranial magnetic stimulation (TMS). We are looking in depth at the contributions of the cerebellum and cerebro-cerebellar circuits to cognition; the effects of chronic heavy alcohol consumption on cognition and brain activation underlying cognitive function; how aging in humans affects neural systems that are important for associative learning and stimulus awareness; and the integration of transcranial magnetic stimulation with functional MRI.

    Research Areas: cognition, alcohol, functional magnetic resonance imaging, imaging, aging, neuroscience, neuroimaging, transcranial magnetic stimulation

    Lab Website

    Principal Investigator

    John Desmond, M.S., Ph.D.

    Department

    Neurology

  • Neuromodulation and Advanced Therapies Center

    We investigate the brain networks and neurotransmitters involved in symptoms of movement disorders, such as Parkinson's disease, and the mechanisms by which modulating these networks through electrical stimulation affects these symptoms. We are particularly interested in the mechanisms through which neuromodulation therapies like deep brain stimulation affect non-motor brain functions, such as cognitive function and mood. We use imaging of specific neurotransmitters, such as acetylcholine and dopamine, to understand the changes in brain chemistry associated with the clinical effects of deep brain stimulation and to predict which patients are likely to have changes in non-motor symptoms following DBS. Through collaborations with our neurosurgery colleagues, we explore brain function by making recordings during DBS surgery during motor and non-motor tasks. Dr. Mills collaborates with researchers in the Department of Neurosurgery, the Division of Geriatric and Neuropsychiatry in the Depar...tment of Psychiatry and Behavioral Sciences and in the Division of Nuclear Medicine within the Department of Radiology to translate neuroimaging and neurophysiology findings into clinical applications. view less

    Research Areas: Molecular imaging of effects of deep brain stimulation on cognitive function in Parkinson's disease, Trajectories and types of cognitive impairment in Parkinson's disease, Effects of neuromodulation on impulsivity and addiction-related behaviors, Parkinson's disease, Effects of transcranial direct current stimulation on mood disorders and cognitive dysfunction in Parkinson's disease, Relationship between patient-reported and objective cognitive impairments in Parkinson's disease

    Principal Investigator

    Kelly Mills, M.D., M.H.S.

    Department

    Neurology
    Neurosurgery

  • Nicholas Dalesio Lab

    Research in the Nicholas Dalesio Lab is currently examining pre-surgical predictors of post-surgical respiratory complications in children with obstructive sleep apnea and sleep-disordered breathing; the impact of anesthesia and pharmacological agents on upper airway physiology; and techniques for pediatric airway imaging.

    Research Areas: children, respiratory system, obstructive sleep apnea, anesthesia, pediatrics, sleep disorders

  • Nicholas Flavahan Lab

    The Nicholas Flavahan Lab primarily researches the cellular interactions and subcellular signaling pathways that control normal vascular function and regulate the initiation of vascular disease. We use biochemical and molecular analyses of cellular mediators and cell signaling mechanisms in cultured vascular cells, while also conducting physiological assessments and fluorescent microscopic imaging of signaling systems in isolated blood vessels. A major component of our research involves aterioles, tiny blood vessles that are responsible for controlling the peripheral resistance of the cardiovascular system, which help determine organ blood flow.

    Research Areas: biochemistry, Raynaud's phenomenon, vascular biology, vasospasms

  • Nicholas Zachos Lab

    Researchers in the Nicholas Zachos Lab work to understand variations in protein trafficking that occur during pathophysiological conditions that cause ion and water transport that result in diarrhea. We recently identified a clathrin-independent endocytic pathway responsible for elevated intracellular calcium-mediated inhibition of NHE3 activity in intestinal epithelial cells. We use advanced imaging techniques, including confocal and multi-photon microscopy, to characterize protein trafficking of intestinal transporters. We also perform functional assays using fluorescent probes (ratiometric and non-ratiometric) to measure ion transport in cell culture models, intact intestinal tissues and human small intestinal enteroids.

    Research Areas: imaging, protein trafficking, diarrhea, bioinformatics, molecular biology

    Principal Investigator

    Nicholas Zachos, Ph.D.

    Department

    Medicine

  • O'Connor Lab

    How do brain dynamics give rise to our sensory experience of the world? The O'Connor lab works to answer this question by taking advantage of the fact that key architectural features of the mammalian brain are similar across species. This allows us to leverage the power of mouse genetics to monitor and manipulate genetically and functionally defined brain circuits during perception. We train mice to perform simple perceptual tasks. By using quantitative behavior, optogenetic and chemical-genetic gain- and loss-of-function perturbations, in vivo two-photon imaging, and electrophysiology, we assemble a description of the relationship between neural circuit function and perception. We work in the mouse tactile system to capitalize on an accessible mammalian circuit with a precise mapping between the sensory periphery and multiple brain areas. Our mission is to reveal the neural circuit foundations of sensory perception; to provide a framework to understand how circuit dysfunction causes ...mental and behavioral aspects of neuropsychiatric illness; and to help others fulfill creative potential and contribute to human knowledge. view more

    Research Areas: brain, mental illness, neuroscience, perception

    Lab Website

    Principal Investigator

    Daniel O'Connor, M.A., Ph.D.

    Department

    Neuroscience

  1. 1
  2. 2