Find a Research Lab

Enter a research interest, principal investigator or keyword

Displaying 61 to 62 of 62 results for imaging

Show: 10 · 20 · 50

  1. 1
  2. 2
  3. 3
  4. 4
  • Zanvyl Krieger Mind/Brain Institute

    The Zanvyl Krieger Mind/Brain Institute is dedicated to the study of the neural mechanisms of higher brain functions using modern neurophysiological, anatomical and computational techniques. Our researchers use various approaches to understand information processing and its influence on perception, memory, abstract thought, complex behavior and consciousness. Systems and cognitive laboratories use neurophysiology, brain imaging and psychophysics to develop a quantitative, network-level understanding of cognitive information processing. Other researchers use analytical approaches such as system identification, dimensionality reduction, information theory and network modeling to understand information processing. Other areas of research in the Institute include the study of how visual and tactile information processing leads to perception and understanding of two- and three-dimensional objects. Another focus is on neural processing and recognition of speech and other complex sounds. St...ill other laboratories study neural mechanisms of attention, memory formation, motor learning, decision-making and executive control of behavior. view more

    Research Areas: brain, neurophysiology, consciousness, neuroscience, perception

    Lab Website

    Principal Investigator

    Charles Connor, Ph.D.

    Department

    Neuroscience

  • Zaver M. Bhujwalla Lab – Cancer Imaging Research

    Dr. Bhujwalla’s lab promotes preclinical and clinical multimodal imaging applications to understand and effectively treat cancer. The lab’s work is dedicated to the applications of molecular imaging to understand cancer and the tumor environment. Significant research contributions include 1) developing ‘theranostic agents’ for image-guided targeting of cancer, including effective delivery of siRNA in combination with a prodrug enzyme 2) understanding the role of inflammation and cyclooxygenase-2 (COX-2) in cancer using molecular and functional imaging 3) developing noninvasive imaging techniques to detect COX-2 expressing in tumors 4) understanding the role of hypoxia and choline pathways to reduce the stem-like breast cancer cell burden in tumors 5) using molecular and functional imaging to understand the role of the tumor microenvironment including the extracellular matrix, hypoxia, vascularization, and choline phospholipid metabolism in prostate and breast cancer invasion and metast...asis, with the ultimate goal of preventing cancer metastasis and 6) molecular and functional imaging characterization of cancer-induced cachexia to understand the cachexia-cascade and identify novel targets in the treatment of this condition. view less

    Research Areas: molecular and functional imaging, preventing cancer metastasis, metastasis, image-guided targeting of cancer, cancer-induced cachexia, cancer imaging

  1. 1
  2. 2
  3. 3
  4. 4