Find a Research Lab

Enter a research interest, principal investigator or keyword

Displaying 31 to 40 of 67 results for imaging

Show: 10 · 20 · 50

  1. 2
  2. 3
  3. 4
  4. 5
  5. 6
  • Jun Hua Lab

    Dr. Hua's research has centered on the development of novel MRI technologies for in vivo functional and physiological imaging in the brain, and the application of such methods for studies in healthy and diseased brains. These include the development of human and animal MRI methods to measure functional brain activities, cerebral perfusion and oxygen metabolism at high (3 Tesla) and ultra-high (7 Tesla and above) magnetic fields. He is particularly interested in novel MRI approaches to image small blood and lymphatic vessels in the brain. Collaborating with clinical investigators, these techniques have been applied 1) to detect functional, vascular and metabolic abnormalities in the brain in neurodegenerative diseases such as Huntingdon's disease (HD), Parkinson's disease (PD), Alzheimer's disease (AD) and mental disorders such as schizophrenia; and 2) to map brain functions and cerebrovascular reactivity for presurgical planning in patients with vascular malformations, brain tumors and... epilepsy. view more

    Research Areas: imaging technology development, applications in brain diseases

  • Karakousis Lab

    The Karakousis Lab is primarily focused on understanding the molecular basis of Mycobacterium tuberculosis persistence and antibiotic tolerance. A systems biology-based approach, including the use of several novel in vitro and animal models, in combination with transcriptional, proteomic, genetic, imaging, and computational techniques, is being used to identify host cytokine networks responsible for immunological control of M. tuberculosis growth, as well as M. tuberculosis regulatory and metabolic pathways required for bacillary growth restriction and reactivation. In particular, we are actively investigating the regulatory cascade involved in the mycobacterial stringent response. Another major focus of the lab is the development of host-directed therapies for TB, with the goal of shortening treatment and improving long-term lung function. Additional research interests include the development of novel molecular assays for the rapid diagnosis of latent TB infection and active TB diseas...e, and for the detection of drug resistance. view more

    Research Areas: diagnostics, persistence, infectious disease, Mycobacterium tuberculosis, host-directed therapy, latency, drugs, antibiotics, tuberculosis

    Lab Website

    Principal Investigator

    Petros Karakousis, M.D.

    Department

    Medicine

  • Kashani Lab

    Dr. Amir Kashani and his team are developing novel diagnostic and therapeutic methods to diagnose and treat retinal diseases using advanced imaging methods. These methods can detect the earliest changes in retinal capillaries before they are noticeable to the patient or doctor.

    Research Areas: Retinal Vascular Disease, OCT Angiography, Vascular Cognitive Impairment and Dementia, diabetic retinopathy, Stem Cell Therapy of Retinal Disease

    Lab Website

    Principal Investigator

    Amir Kashani, M.D., Ph.D.

    Department

    Ophthalmology

  • Kristina Nielsen Laboratory

    The Kristina Nielsen Laboratory investigates neural circuits in the visual cortex that are responsible for encoding objects to understand how the visual system performs object recognition. We aim to reveal the fine-scale organization of neural circuits, with an emphasis on higher-level visual areas. We use two-photon microscopy to perform high-resolution functional imaging of visual areas in the non-human primate. We also investigate how the function of higher visual areas changes over the course of brain development in ferrets, by measuring the activity of single neurons in these areas, as well as determining the animal's visual capabilities at various developmental stages. In both types of investigations, we also rely on detailed anatomical techniques to precisely observe how the function of neuronal circuits is related to their structure.

    Research Areas: neural circuits, neurons, imaging, vision, photon microscopy, object perception

    Lab Website

    Principal Investigator

    Kristina Nielsen, Ph.D.

    Department

    Neuroscience

  • Kristine Glunde Lab

    The Glunde lab is within the Division of Cancer Imaging Research in the Department of Radiology and Radiological Science. The lab is developing mass spectrometry imaging as part of multimodal molecular imaging workflows to image and elucidate hypoxia-driven signaling pathways in breast cancer. They are working to further unravel the molecular basis of the aberrant choline phospholipid metabolism in cancer. The Glunde lab is developing novel optical imaging agents for multi-scale molecular imaging of lysosomes in breast tumors and discovering structural changes in Collagen I matrices and their role in breast cancer and metastasis.

    Research Areas: breast cancer, mass spectrometry, imaging, cancer, metastasis, metabolism, optical imaging

  • Laboratory for Integrated NanoDiagnostics (LIND)

    The Laboratory for Integrated NanoDiagnostics (LIND) is developing innovative technologies for accurate, fast, compact, portable, manufacturable, low-cost diagnostics for a wide variety of applications. Our current focus is a large-scale collaboration with imec, a leading microelectronics company in Leuven, Belgium, where our silicon is designed and manufactured. With major funding from miDiagnostics we are inventing solutions that are opening new avenues.

    Research Areas: quantitative RT-PCR, in vitro diagnostics, surface chemistry, lens-free imaging, microfluidics, colorimetry, fluorimetry

    Principal Investigator

    Stuart Ray, M.D.

    Department

    Medicine

  • Laboratory of Computational Intensive Care Medicine (Stevens Lab)

    The Johns Hopkins Laboratory of Computational Intensive Care Medicine (LCICM) has been established to gain knowledge on the mechanisms of critical illness and injury, with the aim of identifying novel methods to treat patients admitted to the intensive care unit (ICU). Members of the lab apply mathematical and statistical models, artificial intelligence, and domain expertise to unravel patterns in data from sources such as electronic health records, high-frequency physiological recordings, and medical imaging. These patterns are resolved into health signatures that can be leveraged for classification and prediction. The overarching goal is to enhance the precision, efficacy, and outcomes of care delivered to critically ill patients.

    Research Areas: Data Science, Intensive Care Medicine, Personalized Medicine

  • Lima Lab

    The Lima Lab’s research is concentrated on the development and application of imaging and technology to address scientific and clinical problems involving the heart and vascular system.

    Specifically, our research is focused on developing magnetic resonance imaging (MRI) contrast techniques to investigate microvascular function in patients and experimental animals with myocardial infarction; functional reserve secondary to dobutamine stimulation and myocardial viability assessed by sodium imaging; and cardiac MRI and computed tomography (CT) program development of techniques to characterize atherosclerosis in humans with cardiovascular or cerebrovascular disease.

    Current projects include:
    • The Coronary Artery Risk Development in Young Adults (CARDIA) Study
    • The MESA (Multi-Ethnic Study of Atherosclerosis) Study
    • The Coronary Artery Evaluation using 64-row Multidetector Computed Tomography Angiography (CORE64) Study

    Joao Lima, MD, is a professor of medicine, radiology and... epidemiology at the Johns Hopkins School of Medicine. view more

    Research Areas: magnetic resonance, cerebrovascular, imaging, cardiovascular, cardiology, atherosclerosis, computed tomography, vascular, myocardial infarction

    Lab Website

    Principal Investigator

    Joao Lima, M.B.A., M.D.

    Department

    Medicine

  • Marie-France Penet Lab

    The Penet lab is within the Division of Cancer Imaging Research in the Department of Radiology and Radiological Science. The lab research focuses on using multimodal imaging techniques to better understand the microenvironment and improve cancer early detection, especially in ovarian cancer. By combining MRI, MRS and optical imaging, we are studying the tumor microenvironment to understand the role of hypoxia, tumor vascularization, macromolecular transport and tumor metabolism in tumor progression, metastasis and ascites formation in orthotopic models of cancer. We also are studying the role of tumor-associated macrophages in tumor progression.

    Research Areas: tumor vascularization, prostate cancer, tumor metabolism, magnetic resonance spectroscopy, macromolecular transport, optical imaging, pancreatic cancer, MRI, tumor-associated macrophages, hypoxia, ovarian cancer, cancer-induced cachexia, cancer imaging

  • Martin G. Pomper Lab

    Recent advances in molecular and cellular biology, the emergence of more sophisticated animal models of human disease and the development of sensitive, high-resolution imaging systems enable the study of pathophysiology noninvasively in unprecedented detail. The overall goal of our work is to develop new techniques and agents to study human disease through imaging. We concentrate on two areas, i.e., cancer and central nervous system processes. Our work extends from basic chemical and radiochemical synthesis to clinical translation.

    Research Areas: imaging, cancer

    Lab Website

    Principal Investigator

    Martin Pomper, M.D., Ph.D.

    Department