Find a Research Lab

Enter a research interest, principal investigator or keyword

Displaying 1 to 10 of 13 results for heart disease

Show: 10 · 20 · 50

  1. 1
  2. 2
  • Adrian Dobs Lab

    Researchers in the Adrian Dobs Lab study topics that include gonadal dysfunction, hyperlipidemia, diabetes mellitus, and the relationship between sex hormones and heart disease. We currently are investigating male gonadal function—with particular interest in new forms of male hormone replacement therapy—and hormonal changes related to aging.

    Research Areas: diabetes mellitus, hormones, hyperlipidemia, male gonadal function, cardiovascular diseases, endocrinology

    Principal Investigator

    Adrian Dobs, M.D., M.H.S.

    Department

    Medicine

  • Chulan Kwon Laboratory

    The C. Kwon Lab studies the cellular and molecular mechanisms governing heart generation and regeneration.

    The limited regenerative capacity of the heart is a major factor in morbidity and mortality rates: Heart malformation is the most frequent form of human birth defects, and cardiovascular disease is the leading cause of death worldwide. Cardiovascular progenitor cells hold tremendous therapeutic potential due to their unique ability to expand and differentiate into various heart cell types.

    Our laboratory seeks to understand the fundamental biology and regenerative potential of multi-potent cardiac progenitor cells – building blocks used to form the heart during fetal development — by deciphering the molecular and cellular mechanisms that control their induction, maintenance, and differentiation. We are also interested in elucidating the maturation event of heart muscle cells, an essential process to generate adult cardiomyocytes, which occurs after terminal differentiation ...of the progenitor cells. We believe this knowledge will contribute to our understanding of congenital and adult heart disease and be instrumental for stem cell-based heart regeneration.

    We have developed several novel approaches to deconstruct the mechanisms, including the use of animal models and pluripotent stem cell systems. We expect this knowledge will help us better understand heart disease and will be instrumental for stem-cell-based disease modeling and interventions for of heart repair.

    Dr. Chulan Kwon is an assistant professor of medicine at the Johns Hopkins University Heart and Vascular Institute.
    view less

    Research Areas: stem cells, cell biology, heart regeneration, congenital heart disease, cardiovascular, molecular biology, cardiac cells

    Lab Website

    Principal Investigator

    Chulan Kwon, M.S., Ph.D.

    Department

    Medicine

  • David Levine Lab

    Research in the David Levine Lab focuses on the behavioral aspects of heart and vascular disease.

    Research Areas: heart disease, behavioral medicine, vascular diseases

    Lab Website

    Principal Investigator

    David Levine, M.D.

    Department

    Medicine

  • Dhananjay Vaidya Lab

    Research conducted in the Dhananjay Vaidya Lab focuses on the prevention of heart disease, with special emphasis on cardiometabolic risk factors, genetics in high-risk families, cardiovascular epidemiology, statistics and vascular biology. We also provide consultation on study design as well as plan and oversee data analyses for projects supported by the Center for Child and Community Health Research.

    Research Areas: heart disease, epidemiology, data analysis, cardiometabolic risk factors, statistics, study design, cardiovascular, genomics, vascular biology

    Principal Investigator

    Jay Vaidya, M.B.B.S., M.P.H., Ph.D.

    Department

    Medicine

  • Foster Lab

    The Foster Lab uses the tools of protein biochemistry and proteomics to tackle fundamental problems in the fields of cardiac preconditioning and heart failure. Protein networks are perturbed in heart disease in a manner that correlates only weakly with changes in mRNA transcripts. Moreover, proteomic techniques afford the systematic assessment of post-translational modifications that regulate the activity of proteins responsible for every aspect of heart function from electrical excitation to contraction and metabolism. Understanding the status of protein networks in the diseased state is, therefore, key to discovering new therapies.

    D. Brian Foster, Ph.D., is an assistant professor of medicine in the division of cardiology, and serves as Director of the Laboratory of Cardiovascular Biochemistry at the Johns Hopkins University School of Medicine.


    Research Areas: proteomics, protein biochemistry, heart failure, cardiology, cardiac preconditioning, cardiomyopathy

    Lab Website

    Principal Investigator

    D. Brian Foster, M.Sc., Ph.D.

    Department

    Medicine

  • Hibino Lab

    The focus of the Hibino lab is cardiovascular tissue engineering, bio-3D-printing and cardiac surgery. In terms of cardiac tissue engineering, coronary heart disease and heart failure are major diseases worldwide and current strategies focus on revascularization. However, if the cardiac tissue is non-contractile and scarred, there is limited benefit in revascularization. We aim to use innovative and novel tissue engineering approaches to remascularize the heart. The second focus of our lab is vascular tissue engineering and focuses on using different bio-materials to create biodegradable vascular tissue that will mimic native vessels.

    Research Areas: tissue engineering

    Lab Website

    Principal Investigator

    Narutoshi Hibino, M.D., Ph.D.

    Department

    Surgery

  • Hsu Lab

    Our work is focused on the translational human in vivo and ex vivo assessments of right ventricular (RV) function in the setting of pulmonary hypertension.

    Among patients with group I pulmonary arterial hypertension PAH, those with systemic-sclerosis-associated PAH (SSc-PAH) have a particularly poor prognosis and less optimal response to PAH-guided therapy. Using in vivo pressure-volume catheterization of the right ventricle, we have uncovered key deficiencies in resting and reserve RV function in the SSc-PAH group when compared to idiopathic PAH (IPAH) patients. These studies have uncovered key discoveries with regards to right ventricular-pulmonary arterial (RV-PA) coupling in PAH. In the lab, by studying myofilament function from RV endomyocardial biopsies from these same patients, we have uncovered corresponding deficiencies in myofilament contractility and calcium sensitivity as well. Ongoing work is directed towards determining the underlying mechanism of these findings, which... will hopefully lead to therapeutic applications for RV failure in SSc-PAH.

    Further endeavors are directed towards studying RV failure in other populations, including exercise-induced PH, PH secondary to left-heart disease, and the left ventricular assist device population.
    view less

    Research Areas: pulmonary hypertension, exercise-induced pulmonary hypertension

    Principal Investigator

    Steven Hsu, M.D.

    Department

    Medicine

  • Institute for Computational Medicine

    The Institute for Computational Medicine's mission is to develop quantitative approaches for understanding the mechanisms, diagnosis and treatment of human disease through biological systems modeling, computational anatomy, and bioinformatics. Our disease focus areas include breast cancer, brain disease and heart disease.

    The institute builds on groundbreaking research at both the Johns Hopkins University Whiting School of Engineering and the School of Medicine.

    Research Areas: breast cancer, systems biology, brain, biomedical engineering, cardiology, bioinformatics, computational anatomy

  • Kass Lab

    Basic science investigations span an array of inquiries, such as understanding the basic mechanisms underlying cardiac dyssynchrony and resynchronization in the failing heart, and beneficial influences of nitric oxide/cGMP/protein kinase G and cGMP-targeted phosphdiesterase signaling cascades on cardiac maladaptive stress remodeling. Recently, the latter has particularly focused on the role of phosphodiesterase type 5 and its pharmacologic inhibitors (e.g. sildenafi, Viagra®), on myocyte signaling cascades modulated by protein kinase G, and on the nitric oxide synthase dysregulation coupled with oxidant stress.

    The lab also conducts clinical research and is presently exploring new treatments for heart failure with a preserved ejection fraction, studying ventricular-arterial interaction and its role in adverse heart-vessel coupling in left heart failure and pulmonary hypertension, and testing new drug, device, and cell therapies for heart disease. A major theme has been with the use ...of advanced non-invasive and invasive catheterization-based methods to assess cardiac mechanics in patients.asive and invasive catheterization-based methods to assess cardiac mechanics in patients.

    David Kass, MD, is currently the Director at the Johns Hopkins Center for Molecular Cardiobiology and a professor in cellular and molecular medicine.
    view more

    Research Areas: pulmonary hypertension, heart disease, cardiac hypertrophy, heart failure, cardiology

    Lab Website

    Principal Investigator

    David Kass, M.D.

    Department

    Medicine

  • Pedersen Laboratory

    The Pedersen Laboratory is interested in cell energetics and the relationship of cell energetics to molecular medicine and disease. Both mitochondrial and glycolytic processes are being studied at the tissue, cell, and molecular level. Also, the relationship of these processes to cancer and heart disease, the two major causes of death in the U.S., is being studied with the objective of discovering and developing new therapies.

    Specific projects in the laboratory that are currently under investigation include: 1) The structure, mechanism, and regulation of the mitochondrial ATP synthase/ATPase complex; 2) The molecular basis of cancer's most common phenotype, i.e., an elevated glucose metabolism; and 3) The regulation of heart function under normal and ischemic conditions as it relates to the mitochondrial ATP synthase/ATPase complex.

    Our team consists of chemists, biologists and clinicians who work together in a highly collaborative environment.

    Research Areas: heart disease, cancer, cell energetics, mitochondria, molecular biology

    Lab Website

    Principal Investigator

    Peter Pedersen, Ph.D.

    Department

    Biological Chemistry

  1. 1
  2. 2