Find a Research Lab

Enter a research interest, principal investigator or keyword

Displaying 41 to 60 of 72 results for genomics

Show: 10 · 20 · 50

  1. 1
  2. 2
  3. 3
  4. 4
  • Margaret Daniele Fallin Lab

    Work in the Margaret Daniele Fallin Lab focuses on the genetic epidemiology of neuropsychiatric conditions. Our team primarily studies the genetic basis of autism spectrum disorder, Alzheimer’s disease, schizophrenia and bipolar disorder. We also explore the integration of genetic susceptibility and environmental risk. Our current research involves applying genetic epidemiology methods to develop applications and methods for epigenetic epidemiology, with a focus on mental health and development.

    Research Areas: autism, mental health, epidemiology, schizophrenia, genomics, bipolar disorder, neuropsychiatric disease, Alzheimer's disease

  • Michael Wolfgang Laboratory

    The Wolfgang Laboratory is interested in understanding the metabolic properties of neurons and glia at a mechanistic level in situ. Some of the most interesting, enigmatic and understudied cells in metabolic biochemistry are those of the nervous system. Defects in these pathways can lead to devastating neurological disease. Conversely, altering the metabolic properties of the nervous system can have surprisingly beneficial effects on the progression of some diseases. However, the mechanisms of these interactions are largely unknown.

    We use biochemical and molecular genetic techniques to study the molecular mechanisms that the nervous system uses to sense and respond to metabolic cues. We seek to understand the neurometabolic regulation of behavior and physiology in obesity, diabetes and neurological disease.

    Current areas of study include deconstructing neurometabolic pathways to understand the biochemistry of the nervous system and how these metabolic pathways impact animal beh...avior and physiology, metabolic heterogeneity and the evolution of metabolic adaptation. view more

    Research Areas: metabolic biochemistry, obesity, diabetes, genomics, neurology, nervous system, molecular biology

    Principal Investigator

    Michael J. Wolfgang, Ph.D.

    Department

    Biological Chemistry

  • Mihaela Pertea Lab

    The Mihaela Pertea Lab develops computational tools for RNA sequence analysis, gene finding, splice-site prediction and sequence-motif finding. Previous research projects led to the development of open-source software systems related to finding genes.

    Research Areas: computational biology, DNA, genomics, RNA

    Lab Website

    Principal Investigator

    Mihaela Pertea, M.S., M.S.E., Ph.D.

    Department

    Medicine

  • Miho Iijima Laboratory

    The Miho Iijima Laboratory works to make a further connection between cells' signaling events and directional movement. Our researchers have identified 17 new PH domain-containing proteins in addition to 10 previously known genes in the Dictyostelium cDNA and genome database. Five of these genes contain both the Dbl and the PH domains, suggesting these proteins are involved in actin polymerization. A PTEN homologue has also been identified in Dictyostelium that is highly conserved with the human gene. We are disrupting all of these genes and studying their roles in chemotaxis.

    Research Areas: cell biology, chemotaxis, genomics

    Lab Website

    Principal Investigator

    Miho Iijima, M.S., Ph.D.

    Department

    Cell Biology

  • Mohamed Farah Lab

    The Mohamed Farah Lab studies axonal regeneration in the peripheral nervous system. We've found that genetic deletion and pharmacological inhibition of beta-amyloid cleaving enzyme (BACE1) markedly accelerate axonal regeneration in the injured peripheral nerves of mice. We postulate that accelerated nerve regeneration is due to blockade of BACE1 cleavage of two different BACE1 substrates. The two candidate substrates are the amyloid precursor protein (APP) in axons and tumor necrosis factor receptor 1 (TNFR1) on macrophages, which infiltrate injured nerves and clear the inhibitory myelin debris. In the coming years, we will systematically explore genetic manipulations of these two substrates in regard to accelerated axonal regeneration and rapid myelin debris removal seen in BACE1 KO mice. We also study axonal sprouting and regeneration in motor neuron disease models.

    Research Areas: genomics, nerve regeneration, nervous system

    Lab Website

    Principal Investigator

    Mohamed Farah, Ph.D.

    Department

    Neurology

  • Mollie Meffert Lab

    The Mollie Meffert Lab studies mechanisms underlying enduring changes in brain function. We are interested in understanding how programs of gene expression are coordinated and maintained to produce changes in synaptic, neuronal and cognitive function. Rather than concentrating on single genes, our research is particularly focused on understanding the upstream processes that allow neuronal stimuli to synchronously orchestrate both up and down-regulation of the many genes required to mediate changes in growth and excitation. This process of gene target specificity is implicit to the appropriate production of gene expression programs that control lasting alterations in brain function.

    Research Areas: cognition, neuronal function, synaptic function, brain, genomics

  • Nathaniel Comfort Lab

    Research in the Nathaniel Comfort Lab looks at the history of biology. Areas of particular interest include heredity and health in 20th century America, genetics, molecular biology, biomedicine, the history of recent science, oral history and interviewing.

    Research Areas: biomedicine, history of biology, genomics, history of medicine, molecular biology

  • Nauder Faraday Lab

    The Nauder Faraday Lab investigates topics within perioperative genetic and molecular medicine. We explore thrombotic, bleeding and infectious surgical complications. Our goal is to uncover the molecular determinants of outcome in surgical patients, which will enable surgeons to better personalize a patient’s care in the perioperative period. Our team is funded by the National Institutes of Health to research platelet phenotypes, the pharmacogenomics of antiplatelet agents for preventing cardiovascular disease, and the genotypic determinants of aspirin response in high-risk families.

    Research Areas: cardiac surgery, molecular medicine, post-surgical outcomes, genomics, cardiovascular diseases, post-surgery complications

  • Peisong Gao Lab

    The Peisong Gao Lab’s major focus is to understand the immunological and genetic regulation of allergic diseases. We have been involved in the identification of the genetic basis for atopic dermatitis and eczema herpeticum (ADEH) as part of the NIH Atopic Dermatitis and Vaccinia Network-Clinical Studies Consortium. Major projects in the Gao Lab include immunogenetic analysis of human response to allergen, identification of candidate genes for specific immune responsiveness to cockroach allergen, and epigenetics of food allergy (FA).

    Research Areas: food allergies, eczema herpeticum, epigenetics, allergies, genomics, atopic dermatitis

    Principal Investigator

    Peisong Gao, M.D., Ph.D.

    Department

    Medicine

  • Phenotyping and Pathology Core

    The Phenotyping Core promotes functional genomics and other preclinical translational science at Johns Hopkins. We assist and collaborate in the characterization and use of genetically and phenotypically relevant animal models of disease and gene function.

    Research Areas: pathobiology, phenotyping, translational research, genomics

    Lab Website

    Principal Investigator

    Cory Brayton, D.V.M.

    Department

    Molecular and Comparative Pathobiology

  • Philip Wong Lab

    The Philip Wong Lab seeks to understand the molecular mechanisms and identification of new therapeutic targets of neurodegenerative diseases, particularly Alzheimer's disease (AD) and amyotrophic lateral sclerosis (ALS). Taking advantage of discoveries of genes linked to these diseases (mutant APP and PS in familial AD and mutant SOD1, dynactin p150glued ALS4and ALS2 in familial ALS), our laboratory is taking a molecular/cellular approach, including transgenic, gene targeting and RNAi strategies in mice, to develop models that facilitate our understanding of pathogenesis of disease and the identification and validation of novel targets for mechanism-based therapeutics. Significantly, these mouse models are instrumental for study of disease mechanisms, as well as for design and testing of therapeutic strategies for AD and ALS.

    Research Areas: neurodegenerative disorders, ALS, genomics, pathogenesis, Alzheimer's disease

    Lab Website

    Principal Investigator

    Philip Wong, Ph.D.

    Department

    Pathology

  • Rasika Mathias Lab

    Research in the Rasika Mathias Lab focuses on the genetics of asthma in people of African ancestry. Our work led to the first genomewide association study of its kind in 2009. Currently, we are analyzing the whole-genome sequence of more than 1,000 people of African ancestry from the Consortium on Asthma among African-ancestry Populations in the Americas (CAAPA). CAAPA’s goal is to use whole-genome sequencing to expand our understanding of how genetic variants affect asthma risk in populations of African ancestry and to provide a public catalog of genetic variation for the scientific community. We’re also involved in the study of coronary artery disease though the GeneSTAR Program, which aims to identify mechanisms of atherogenic vascular diseases and attendant comorbidities.

    Research Areas: heart disease, African Americans, asthma, genomics, health disparities

    Principal Investigator

    Rasika Mathias, Sc.D.

    Department

    Medicine

  • Reeves Lab

    The Reeves Lab complements genetic analyses in human beings with the creation and characterization of mouse models to understand why and how gene dosage imbalance disrupts development in Down syndrome (DS). These models then provide a basis to explore therapeutic approaches to amelioration of DS features. We use chromosome engineering in embryonic stem cells (ES) to create defined dosage imbalance in order to localize the genes contributing to these anomalies and to directly test hypotheses concerning Down syndrome "critical regions" on human chromosome 21.

    Research Areas: Down syndrome, stem cells, chromosome 21, genomics

    Lab Website

    Principal Investigator

    Roger Reeves, Ph.D.

    Department

    Physiology

  • Retrovirus Laboratory

    Research in the Retrovirus Laboratory focuses on the molecular virology and pathogenesis of lentivirus infections. In particular, we study the simian immunodeficiency virus (SIV) to determine the molecular basis for the development of HIV CNS, pulmonary and cardiac disease.

    Research projects include studies of viral molecular genetics and host cell genes and proteins involved in the pathogenesis of disease. We are also interested in studies of lentivirus replication in macrophages and astrocytes and their role in the development of disease. These studies have led us to identify the viral genes that are important in neurovirulence of SIV and the development of CNS disease including NEF and the TM portion of ENV. The mechanisms of the action of these proteins in the CNS are complex and are under investigation. We have also developed a rapid, consistent SIV/macaque model in which we can test the ability of various antiviral and neuroprotective agents to reduce the severity of CNS and ...pulmonary disease. view more

    Research Areas: HIV, genomics, pulmonology, SIV, cardiology, lentivirus

    Principal Investigator

    Janice Clements, Ph.D.

    Department

    Molecular and Comparative Pathobiology

  • Ryuya Fukunaga Lab

    The Fukunaga Lab uses multidisciplinary approaches to understand the cell biology, biogenesis and function of small silencing RNAs from the atomic to the organismal level.

    The lab studies how small silencing RNAs, including microRNAs (miRNAs), small interfering RNAs (siRNAs) and piwi-interacting RNAs (piRNAs), are produced and how they function. Mutations in the small RNA genes or in the genes involved in the RNA pathways cause many diseases, including cancers. We use a combination of biochemistry, biophysics, fly genetics, cell culture, X-ray crystallography and next-generation sequencing to answer fundamental biological questions and also potentially lead to therapeutic applications to human diseases.

    Research Areas: biophysics, biochemistry, cell biology, cell culture, genomics, RNA

    Principal Investigator

    Ryuya Fukunaga, Ph.D.

    Department

    Biological Chemistry

  • Salzberg Lab

    Research in the Salzberg Lab focuses on the development of new computational methods for analysis of DNA from the latest sequencing technologies. Over the years, we have developed and applied software to many problems in gene finding, genome assembly, comparative genomics, evolutionary genomics and sequencing technology itself. Our current work emphasizes analysis of DNA and RNA sequenced with next-generation technology.

    Research Areas: computational biology, DNA, genomics, sequencing technology, biostatistics, RNA

  • Seth Blackshaw Lab

    The Seth Blackshaw Lab uses functional genomics and proteomics to rapidly identify the molecular mechanisms that regulate cell specification and survival in both the retina and hypothalamus. We have profiled gene expression in both these tissues, from the start to the end of neurogenesis, characterizing the cellular expression patterns of more than 1,800 differentially expressed transcripts in both tissues. Working together with the lab of Heng Zhu in the Department of Pharmacology, we have also generated a protein microarray comprised of nearly 20,000 unique full-length human proteins, which we use to identify biochemical targets of developmentally important genes of interest.

    Research Areas: retina, central nervous system, biochemistry, hypothalamus, proteomics, genomics

    Lab Website

    Principal Investigator

    Seth Blackshaw, Ph.D.

    Department

    Neuroscience

  • Seydoux Lab

    The Seydoux Lab studies the earliest stages of embryogenesis to understand how single-celled eggs develop into complex multicellular embryos. We focus on the choice between soma and germline, one of the first developmental decisions faced by embryos. Our goal is to identify and characterize the molecular mechanisms that activate embryonic development, polarize embryos, and distinguish between somatic and germline cells, using Caenorhabditis elegans as a model system. Our research program is divided into three areas: oocyte-to-embryo transition, embryonic polarity and soma-germline dichotomy.

    Research Areas: cell biology, soma cells, genomics, germ cells, embryo, molecular biology

  • Shanthini Sockanathan Laboratory

    The Shanthini Sockanathan Laboratory uses the developing spinal cord as our major paradigm to define the mechanisms that maintain an undifferentiated progenitor state and the molecular pathways that trigger their differentiation into neurons and glia. The major focus of the lab is the study of a new family of six-transmembrane proteins (6-TM GDEs) that play key roles in regulating neuronal and glial differentiation in the spinal cord. We recently discovered that the 6-TM GDEs release GPI-anchored proteins from the cell surface through cleavage of the GPI-anchor. This discovery identifies 6-TM GDEs as the first vertebrate membrane bound GPI-cleaving enzymes that work at the cell surface to regulate GPI-anchored protein function. Current work in the lab involves defining how the 6-TM GDEs regulate cellular signaling events that control neuronal and glial differentiation and function, with a major focus on how GDE dysfunction relates to the onset and progression of disease. To solve the...se questions, we use an integrated approach that includes in vivo models, imaging, molecular biology, biochemistry, developmental biology, genetics and behavior. view more

    Research Areas: glia, biochemistry, neurons, imaging, developmental biology, genomics, spinal cord, behavior, molecular biology

    Lab Website

    Principal Investigator

    Shanthini Sockanathan, D.Phil.

    Department

    Neuroscience

  • Susan Michaelis Lab

    The Michaelis Laboratory's research goal is to dissect fundamental cellular processes relevant to human health and disease, using yeast and mammalian cell biology, biochemistry and high-throughput genomic approaches. Our team studies the cell biology of lamin A and its role in the premature aging disease Hutchinson-Gilford progeria syndrome (HGPS). Other research focuses on the core cellular machinery involved in recognition of misfolded proteins. Understanding cellular protein quality control machinery will ultimately help researchers devise treatments for protein misfolding diseases in which degradation is too efficient or not enough.

    Research Areas: biochemistry, cell biology, protein folding, lamin A, aging, genomics, Hutchinson-Gilford progeria syndrome, yeast

    Principal Investigator

    Susan Michaelis, Ph.D.

    Department

    Cell Biology

  1. 1
  2. 2
  3. 3
  4. 4