Find a Research Lab

Enter a research interest, principal investigator or keyword

Displaying 1 to 10 of 75 results for genomics

Show: 10 · 20 · 50

  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  • Alan Scott Lab

    Research in the Alan Scott Lab involves several important areas of genomics. Our team collaborates on a study to investigate the exon and genome sequence variants that determine phenotype, with a specific focus on the genetic bases of cleft lip and palate. We are also involved in assessing and improving genomic technologies to provide next-generation sequencing and analysis of sequence data to the clinical environment. In addition, we have a longstanding interest in the problem of gene annotation and the evolutionary genomics of vertebrates, especially endangered species.

    Research Areas: evolutionary genomics, sequence analysis, genomics, genome annotation, genomic technologies, cleft lip and palate

    Principal Investigator

    Alan Scott, Ph.D.

    Department

    Medicine

  • Alison Moliterno Lab

    The Alison Moliterno Lab studies the molecular pathogenesis of myeloproliferative disorders (MPDs), including polycythemia vera, essential thrombocytosis and idiopathic myelofibrosis. Our research is focused on the genetic and epigenetic lesions associated with MPDs, with the goal of improving diagnosis and treatment for these disorders.

    Research Areas: blood disorders, idiopathic myelofibrosis, essential thrombocytosis, epigenetics, genomics, polycythemia vera, myeloproliferative disorders

    Principal Investigator

    Alison Moliterno, M.D.

    Department

    Medicine

  • Andrew Feinberg Laboratory

    The Feinberg Laboratory studies the epigenetic basis of normal development and disease, including cancer, aging and neuropsychiatric illness. Early work from our group involved the discovery of altered DNA methylation in cancer as well as common epigenetic (methylation and imprinting) variants in the population that may be responsible for a significant population-attributable risk of cancer.

    Over the last few years, we have pioneered the field of epigenomics (i.e., epigenetics at a genome-scale level), founding the first NIH-supported NIH epigenome center in the country and developing many novel tools for molecular and statistical analysis. Current research examines the mechanisms of epigenetic modification, the epigenetic basis of cancer, the invention of new molecular, statistical, and epidemiological tools for genome-scale epigenetics and the epigenetic basis of neuropsychiatric disease, including schizophrenia and autism.

    Research Areas: autism, cancer, epigenetics, schizophrenia, human development, aging, DNA, genomics, neuropsychiatric disease

    Lab Website

    Principal Investigator

    Andrew Feinberg, M.D., M.P.H.

    Department

    Medicine

  • Andrew McCallion Laboratory

    The McCallion Laboratory studies the roles played by cis-regulatory elements (REs) in controlling the timing, location and levels of gene activation (transcription). Their immediate goal is to identify transcription factor binding sites (TFBS) combinations that can predict REs with cell-specific biological control--a first step in developing true regulatory lexicons.

    As a functional genetic laboratory, we develop and implement assays to rapidly determine the biological relevance of sequence elements within the human genome and the pathological relevance of variation therein. In recent years, we have developed a highly efficient reporter transgene system in zebrafish that can accurately evaluate the regulatory control of mammalian sequences, enabling characterization of reporter expression during development at a fraction of the cost of similar analyses in mice. We employ a range of strategies in model systems (zebrafish and mice), as well as analyses in the human population, to illu...minate the genetic basis of disease processes. Our long-term objective is to use these approaches in contributing to improved diagnostic, prognostic and therapeutic strategies in patient care. view more

    Research Areas: cell biology, genomics, gene regulation, nervous system

  • Andrew Wolfe Laboratory

    The Andrew Wolfe Laboratory researches the development and functional regulation of the hypothalamic-pituitary-gonadal axis which controls reproduction. We have had a long-standing interest in the regulation of GnRH gene expression. In addition to performing standard in vitro analysis, we have developed a variety of transgenic and knock-out mouse models that have revealed both cis- and trans-regulatory elements underlying the cell-specific expression of GnRH.

    Our laboratory is also interested in understanding how metabolic status impacts reproductive function. We've developed a mouse model of obesity-induced infertility. Used in conjunction with mouse models of tissue-specific gene deletion, we are able to probe the role of various molecular signals mediating the effects of obesity on reproductive function.

    Research Areas: reproduction, obesity, genomics, fertility, mouse models

    Principal Investigator

    Andrew Wolfe, Ph.D.

    Department

    Pediatrics

  • Beer Lab

    The goal of research in the Beer Lab is to understand how gene regulatory information is encoded in genomic DNA sequence. Our work uses functional genomics DNase-seq, ChIP-seq, RNA-seq, and chromatin state data to computationally identify combinations of transcription factor binding sites that operate to define the activity of cell-type specific enhancers. We are currently focused on improving SVM methodology by including more general sequence features and constraints predicting the impact of SNPs on enhancer activity (delta-SVM) and GWAS association for specific diseases, experimentally assessing the predicted impact of regulatory element mutation in mammalian cells, systematically determining regulatory element logic from ENCODE human and mouse data, and using this sequence based regulatory code to assess common modes of regulatory element evolution and variation.

    Research Areas: computational biology, biomedical engineering, DNA, genomics, RNA

  • Berger Lab

    The Berger Lab's research is focused on understanding how multi-subunit assemblies use ATP for overcoming topological challenges within the chromosome and controlling the flow of genetic information. A long-term goal is to develop mechanistic models that explain in atomic level detail how macromolecular machines transduce chemical energy into force and motion, and to determine how cells exploit and control these complexes and their activities for initiating DNA replication, shaping chromosome superstructure and executing myriad other essential nucleic-acid transactions.

    Our principal approaches include a blend of structural (X-ray crystallography, single-particle EM, SAXS) and solution biochemical methods to define the architecture, function, evolution and regulation of biological complexes. We also have extensive interests in mechanistic enzymology and the study of small-molecule inhibitors of therapeutic potential, the development of chemical approaches to trapping weak protein/p...rotein and protein/nucleic acid interactions, and in using microfluidics and single-molecule approaches for biochemical investigations of protein dynamics. view more

    Research Areas: biochemistry, proteomics, ATP, DNA, genomics

  • Bert Vogelstein Laboratory

    The Bert Vogelstein Laboratory seeks to develop new approaches to the prevention or treatment of cancers through a better understanding of the genes and pathways underlying their pathogenesis.

    Our major focus is on cancers of the colon and rectum. We have shown that each colon neoplasm arises from a clonal expansion of one transformed cell. This expansion gives rise to a small benign colon tumor (called a polyp or adenoma). This clonal expansion and subsequent growth of the tumors appears to be caused by mutations in oncogenes and tumor suppressor genes, and the whole process is accelerated by defects in genes required for maintaining genetic instability. Mutations in four or five such genes are required for a malignant tumor to form, while fewer mutations suffice for benign tumorigenesis. As the mutations accumulate, the tumors become progressively more dangerous.

    Current studies are aimed at the further characterization of the mechanisms through which these genes act, the ident...ification of other genes that play a role in this tumor type, and the application of this knowledge to patient management. view more

    Research Areas: rectal cancer, colon cancer, genomics, pathogenesis

    Lab Website

    Principal Investigator

    Bert Vogelstein, M.D.

    Department

    Oncology

  • Brady Maher Laboratory

    The Brady Maher Laboratory is interested in understanding the cellular and circuit pathophysiology that underlies neurodevelopmental and psychiatric disorders. Our lab focuses on trying to understand the function of genes that are associated with neurodevelopment problems by manipulating their expression level in utero during the peak of cortical development. We then use a variety of approaches and technologies to identify resulting phenotypes and molecular mechanisms including cell and molecular biology, optogenetics, imaging and electrophysiology.

    Current projects in the lab are focused on understanding the function of transcription factor 4 (TCF4), a clinically pleiotropic gene. Genome-wide association studies have identified genetic variants of TCF4 that are associated with schizophrenia, while autosomal dominant mutations in TCF4 result in Pitt Hopkins syndrome. Using our model system, we have identified several interesting electrophysiological and cell biological phenotypes as...sociated with altering the expression of TCF4 in utero. We hypothesize that these phenotypes represent cellular pathophysiology related to these disorders and by understanding the molecular mechanisms responsible for these phenotypes we expect to identify therapeutic targets for drug development.
    view more

    Research Areas: cell biology, neurodevelopment, imaging, schizophrenia, psychiatric disorders, Pitt Hopkins syndrome, elecrophysiology, genomics, drugs, optogenetics, molecular biology, phenotypes

  • Carlo Colantuoni Laboratory

    The Carlo Colantuoni Laboratory explores the genetics of human brain development. His team uses genomic technologies to examine the Lieber Institute's human brain tissue collection, stem cell collection, and vast public data resources.

    Research Areas: stem cells, brain tissue, brain development, genomics

    Principal Investigator

    Carlo Colantuoni, Ph.D.

    Department

    Neurology

  1. 1
  2. 2
  3. 3
  4. 4
  5. 5