Find a Research Lab

Enter a research interest, principal investigator or keyword

Displaying 1 to 37 of 37 results for genetics

Show: 10 · 20 · 50

  1. 1
  • Becker Lab

    The main focus of the Becker lab has been on the mechanisms and consequences of post-ischemic myocardial inflammation.

    Genomic control of platelet function:

    Aggregation of blood platelets initiates clotting in coronary arteries, the main cause of heart attacks. Our laboratory conducts experiments to understand how genes control platelet function. Through funding by the National Heart Lung and Blood Institute, we have performed candidate gene analysis, linkage studies, whole genome association studies, and now whole genome sequencing in about 2000 healthy subjects from families with early onset coronary artery disease. The subjects are siblings or offspring of an individual identified with coronary artery disease before age 60 in the GeneSTAR Research Program (Genetic Studies of Atherosclerosis Risk). We have identified a large number of common and rare genetic variants associated with platelet aggregation, and although some variants are located in genes known to be important in... the biology of platelet function, most are in non-protein coding regions of genes (introns) or in intergenic regions of the genome. To understand better how these variants influence platelet function, we created pluripotent stem cells from blood mononuclear cells in 257 genotyped GeneSTAR subjects and then transformed the stem cells to megakaryocytes, the source of platelets in the bone marrow. We have determined the entire transcriptome of these megakaryocytes to measure gene expression levels in an effort to functionally link genetic variation with platelet function. We are also interested in epigenetic effects which regulate the amount of gene transcription and resulting protein formation. We have done similar transcriptomic and proteomic studies in blood platelets as we have in stem cell-derived megakaryocytes.

    Our goal is to identify new therapeutic targets for drug development to control excessive platelet aggregation and reduce the risk of heart attack in susceptible individuals. We also hope to use the genetic information to predict who is at greatest risk for platelet aggregation or bleeding, and tailor treatment to effectively apply individualized precision medicine.

    The Becker laboratory also extends its cardiovascular work well beyond platelet function, as noted on the GeneSTAR Research Program website.
    view more

    Research Areas: post-ischemic myocardial inflammation, effects of mental stress on the heart, cardiology, genetics of premature coronary artery disease, myocardial infarction

    Lab Website

    Principal Investigator

    Lewis Becker, M.D.

    Department

    Medicine

  • Cammarato Lab

    The Cammarato Lab is located in the Division of Cardiology in the Department of Medicine at the Johns Hopkins University School of Medicine. We are interested in basic mechanisms of striated muscle biology.

    We employ an array of imaging techniques to study “structural physiology” of cardiac and skeletal muscle. Drosophila melanogaster, the fruit fly, expresses both forms of striated muscle and benefits greatly from powerful genetic tools. We investigate conserved myopathic (muscle disease) processes and perform hierarchical and integrative analysis of muscle function from the level of single molecules and macromolecular complexes through the level of the tissue itself.

    Anthony Ross Cammarato, MD, is an assistant professor of medicine in the Cardiology Department. He studies the identification and manipulation of age- and mutation-dependent modifiers of cardiac function, hierarchical modeling and imaging of contractile machinery, integrative analysis of striated muscle performan...ce and myopathic processes. view more

    Research Areas: muscle development, genetics, myopathic processes, striated muscle biology, muscle function, myopathy, muscle physiology

    Lab Website

    Principal Investigator

    Anthony Cammarato, Ph.D.

    Department

    Medicine

  • Dhananjay Vaidya Lab

    Research conducted in the Dhananjay Vaidya Lab focuses on the prevention of heart disease, with special emphasis on cardiometabolic risk factors, genetics in high-risk families, cardiovascular epidemiology, statistics and vascular biology. We also provide consultation on study design as well as plan and oversee data analyses for projects supported by the Center for Child and Community Health Research.

    Research Areas: heart disease, epidemiology, data analysis, cardiometabolic risk factors, statistics, study design, cardiovascular, genomics, vascular biology

    Principal Investigator

    Jay Vaidya, M.B.B.S., M.P.H., Ph.D.

    Department

    Medicine

  • DNA Diagnostic Lab

    Established in 1979, the Johns Hopkins DNA Diagnostic Laboratory is a CLIA and CAP certified; Maryland, New York, and Pennsylvania licensed clinical genetics testing laboratory specializing in rare inherited disorders. Led by renown professor of pediatrics and medical genetics Dr. Garry R. Cutting, the lab offers testing for a range of approximately 50 phenotypes and disorders totaling 3,500 tests annually.

    Research Areas: genetics, genetic sequencing, genetic counseling, rare inherited disorders

    Lab Website

    Principal Investigator

    Garry Cutting, M.D.

    Department

    Pediatrics

  • Dong Laboratory

    The Dong Laboratory has identified many genes specifically expressed in primary sensory neurons in dorsal root ganglia (DRG). Our lab uses multiple approaches, including molecular biology, mouse genetics, mouse behavior and electrophysiology, to study the function of these genes in pain and itch sensation. Other research in the lab examines the molecular mechanism of how skin mast cells sensitize sensory nerves under inflammatory states.

    Research Areas: skin cells, electrophysiology, genetics, itch, neuroscience, pain, molecular biology

    Lab Website

    Principal Investigator

    Xinzhong Dong, Ph.D.

    Department

    Neuroscience

  • Early Detection of Pancreatic Cancer Laboratory

    The goal of the lab's research is to identify molecular abnormalities that can improve the outcome of patients with pancreatic cancer and those at risk of developing this disease. Much of our work is focused on translational research evaluating markers and marker technologies that can help screen patients with an increased risk of developing pancreatic cancer.

    Thus, marker efforts have been focused mostly on identifying markers of advanced precancerous neoplasia (PanINs and IPMNs) that could improve our ability to effectively screen patients at risk of developing pancreatic cancer. We lead or participate in a number of clinical research protocols involved in the screening and early detection of pancreatic neoplasia including the CAPS clinical trials. We maintain a large repository of specimens from cases and controls with and without pancreatic disease and use this repository to investigate candidate markers of pancreatic cancer for their utility to predict pancreatic cancer risk.
    ...
    In addition, we have been working to identify familial pancreatic cancer susceptibility genes and identified BRCA2 as a pancreatic cancer susceptibility gene in 1996. We participate in the PACGENE consortium and the familial pancreatic cancer sequencing initiative. My lab also investigates pancreatic cancer genetics, epigenetics, molecular pathology, tumor stromal interactions and functional analysis of candidate genes and miRNAs. Dr. Goggins is the principal investigator of a phase I/II clinical trial evaluating the Parp inhibitor, olaparib along with irinotecan and cisplatin for patients with pancreatic cancer.
    view less

    Research Areas: pancreatic cancer

    Lab Website

    Principal Investigator

    Michael Goggins, M.B.B.Ch., M.D.

    Department

    Medicine

  • GI Early Detection Biomarkers Lab

    Dr. Meltzer is an internationally renowned leader in the molecular pathobiology of gastrointestinal malignancy and premalignancy. He invented molecular methods to detect loss of heterozygosity in tiny biopsies, triggering an avalanche of research on precancerous lesions. He was the first to comprehensively study coding region microsatellite instability, leading to the identification of several important tumor suppressor genes. He performed several groundbreaking genomic, epigenomic and bioinformatic studies of esophageal and colonic neoplasms, shifting the GI research paradigm toward genome-wide approaches. He directed an ambitious nationwide validation study of DNA methylation-based biomarkers for the prediction of neoplastic progression in Barrett’s esophagus.

    Dr. Meltzer founded and led the Aerodigestive Cancer and Biomarker Interdisciplinary Programs at the University of Maryland, also becoming associate director for core sciences at that school’s Cancer Center. He currently hol...ds an endowed professorship and is the director of GI biomarker research at Johns Hopkins.

    The laboratory group focuses its efforts on the molecular genetics of gastrointestinal cancers and premalignant lesions, as well as on translational research to improve early detection, prognostic evaluation, and treatment of these conditions. Below, some examples of this work are described.
    view less

    Research Areas: gastrointestinal cancer, gastrointestinal

    Principal Investigator

    Stephen Meltzer, M.D.

    Department

    Medicine

  • Howard Levy Lab

    Research interests in the Howard Levy Lab center on the integration of genetics into primary care, education of non-geneticist providers about genetics, and the natural history and management of Ehlers-Danlos syndrome and related disorders of connective tissue.

    Research Areas: primary care, tissue connectivity disorders, genomics, Ehlers-Danlos syndrome

    Principal Investigator

    Howard Levy, M.D., Ph.D.

    Department

    Medicine

  • Huang Laboratory

    Our lab is interested in understanding the fundamental mechanisms of how cells move and implications in disease treatment. We use an interdisciplinary approach involving fluorescent live cell imaging, genetics, and computer modeling to study the systems level properties of the biochemical networks that drive cell migration.

    Research Areas: pathology

    Lab Website

    Principal Investigator

    Chuan-Hsiang Huang, M.D., Ph.D.

    Department

    Pathology

  • James Hamilton Lab

    The main research interests of the James Hamilton Lab are the molecular pathogenesis of hepatocellular carcinoma and the development of molecular markers to help diagnose and manage cancer of the liver. In addition, we are investigating biomarkers for early diagnosis, prognosis and response to various treatment modalities. Results of this study will provide a molecular classification of HCC and allow us to identify targets for chemoprevention and treatment. Specifically, we extract genomic DNA and total RNA from liver tissues and use this genetic material for methylation-specific PCR (MSP), cDNA microarray, microRNA microarray and genomic DNA methylation array experiments.

    Research Areas: cancer, molecular genetics, genomics, pathogenesis, liver diseases, hepatocellular carcinoma

    Principal Investigator

    James Hamilton, M.D.

    Department

    Medicine

  • Josef Coresh Lab

    Research in the Josef Coresh Lab focuses on cardiovascular epidemiology, kidney disease and genetic epidemiology. Our team uses innovative methods to quantify disease burden and consequences in the population; studies the causes and consequences of vascular disease in the heart, kidneys and brain; and works to develop a strong scientific basis for quantifying the burden, causes and consequences of kidney disease. Working in collaboration with leading laboratories and specialists, we also aim to quantify the interplay of genes and environment in health and disease.

    Research Areas: epidemiology, genetics, kidney diseases, cardiovascular, vascular diseases

    Principal Investigator

    Josef Coresh, M.D., Ph.D.

    Department

    Medicine

  • Joseph Mankowski Lab

    The Joseph Mankowski Lab studies the immunopathogenesis of HIV infection using the SIV/macaque model. Our researchers use a multidisciplinary approach to dissect the mechanism underlying HIV-induced nervous system and cardiac diseases. Additionally, we study the role that host genetics play in HIV-associated cognitive disorders.

    Research Areas: macaques, HIV, genomics, SIV, pathogenesis, cardiology, nervous system

    Principal Investigator

    Joseph L. Mankowski, D.V.M., Ph.D.

    Department

    Molecular and Comparative Pathobiology

  • Kenneth W. Kinzler Laboratory

    Dr. Kinzler’s laboratory has focused on the genetics of human cancer. They have identified a variety of genetic mutations that underlie cancer, including mutations of the APC pathway that appear to initiate the majority of colorectal cancers and IDH1/2 mutations that underlying many gliomas. In addition, they have developed a variety of powerful tools for analysis of expression and genetic alterations in cancer.
    Most recently, they have pioneered integrated whole genome analyses of human cancers through expression, copy number, and mutational analyses of all the coding genes in several human cancer types including colorectal, breast, pancreatic and brain. The identification of genetic differences between normal and tumor tissues provide new therapeutic targets, new opportunities for the early diagnosis of cancer, and important insights into the neoplastic process.

    Research Areas: cancer, molecular genetics

    Lab Website

    Principal Investigator

    Kenneth Kinzler, Ph.D.

    Department

    Oncology

  • Li Gao Lab

    The Li Gao Lab researches functional genomics, molecular genetics and epigenetics of complex cardiopulmonary and allergic diseases, with a focus on translational research applying fundamental genetic insight into the clinical setting. Current research includes implementation of high-throughput technologies in the fields of genome-wide association studies (GWAS), massively parallel sequencing, gene expression analysis, epigenetic mapping and integrative genomics in ongoing research of complex lung diseases and allergic diseases including asthma, atopic dermatitis (AD), pulmonary arterial hypertension, COPD, sepsis and acute lung injury/ARDS; and epigenetic contributions to pulmonary arterial hypertension associated with systemic sclerosis.

    Research Areas: pulmonary arterial hypertension, molecular genetics, cardiopulmonary diseases, asthma, epigenetics, complex lung disease, allergies, genomics, COPD, atopic dermatitis

    Principal Investigator

    Li Gao, M.D., Ph.D.

    Department

    Medicine

  • Michael Caterina Lab

    The Caterina lab is focused on dissecting mechanisms underlying acute and chronic pain sensation. We use a wide range of approaches, including mouse genetics, imaging, electrophysiology, behavior, cell culture, biochemistry and neuroanatomy to tease apart the molecular and cellular contributors to pathological pain sensation. A few of the current projects in the lab focus on defining the roles of specific subpopulations of neuronal and non-neuronal cells to pain sensation, defining the role of RNA binding proteins in the development and maintenance of neuropathic pain, and understanding how rare skin diseases known as palmoplantar keratodermas lead to severe pain in the hands and feet.

    Research Areas: biophysics, biochemistry, proteomics, inflammation, pain

    Principal Investigator

    Michael Caterina, M.D., Ph.D.

    Department

    Neurosurgery

  • Mihail Zilbermint Lab

    Research in the Mihail Zilbermint Lab focuses on diabetes, adrenal disease and thyroid disease. Recent areas of focus include pseudohypoaldosteronism type 1 related to novel variants of SCNN1B gene, genetic variance in the ARMC5 gene in primary macronodular adrenocortical hyperplasia and hyperaldosteronism due to de novo KCNJ5 mutation.

    Research Areas: hypoaldosteronism, genetics, tumor, diabetes, hyperplasia, protein kinases

    Principal Investigator

    Mihail Zilbermint, M.D.

    Department

    Medicine

  • Molecular Genetics Laboratory of Female Reproductive Cancer

    The long-term objectives of our research team are:

    a. to understand the molecular etiology in the development of human cancer, and
    b. to identify and characterize cancer molecules for cancer detection, diagnosis, and therapy.

    We use ovarian carcinoma as a disease model because it is one of the most aggressive neoplastic diseases in women. For the first research direction, we aim to identify and characterize the molecular alterations during initiation and progression of ovarian carcinomas.

    Research Areas: genetics, diagnostic pathology, ovarian cancer, gestational trophoblastic diseases

    Lab Website

    Principal Investigator

    Ie-Ming Shih, M.D., Ph.D.

    Department

    Pathology

  • Nathaniel Comfort Lab

    Research in the Nathaniel Comfort Lab looks at the history of biology. Areas of particular interest include heredity and health in 20th century America, genetics, molecular biology, biomedicine, the history of recent science, oral history and interviewing.

    Research Areas: biomedicine, history of biology, genomics, history of medicine, molecular biology

  • O'Connor Lab

    How do brain dynamics give rise to our sensory experience of the world? The O'Connor lab works to answer this question by taking advantage of the fact that key architectural features of the mammalian brain are similar across species. This allows us to leverage the power of mouse genetics to monitor and manipulate genetically and functionally defined brain circuits during perception. We train mice to perform simple perceptual tasks. By using quantitative behavior, optogenetic and chemical-genetic gain- and loss-of-function perturbations, in vivo two-photon imaging, and electrophysiology, we assemble a description of the relationship between neural circuit function and perception. We work in the mouse tactile system to capitalize on an accessible mammalian circuit with a precise mapping between the sensory periphery and multiple brain areas. Our mission is to reveal the neural circuit foundations of sensory perception; to provide a framework to understand how circuit dysfunction causes ...mental and behavioral aspects of neuropsychiatric illness; and to help others fulfill creative potential and contribute to human knowledge. view more

    Research Areas: brain, mental illness, neuroscience, perception

    Lab Website

    Principal Investigator

    Daniel O'Connor, M.A., Ph.D.

    Department

    Neuroscience

  • Rasika Mathias Lab

    Research in the Rasika Mathias Lab focuses on the genetics of asthma in people of African ancestry. Our work led to the first genomewide association study of its kind in 2009. Currently, we are analyzing the whole-genome sequence of more than 1,000 people of African ancestry from the Consortium on Asthma among African-ancestry Populations in the Americas (CAAPA). CAAPA’s goal is to use whole-genome sequencing to expand our understanding of how genetic variants affect asthma risk in populations of African ancestry and to provide a public catalog of genetic variation for the scientific community. We’re also involved in the study of coronary artery disease though the GeneSTAR Program, which aims to identify mechanisms of atherogenic vascular diseases and attendant comorbidities.

    Research Areas: heart disease, African Americans, asthma, genomics, health disparities

    Principal Investigator

    Rasika Mathias, Sc.D.

    Department

    Medicine

  • Retrovirus Laboratory

    Research in the Retrovirus Laboratory focuses on the molecular virology and pathogenesis of lentivirus infections. In particular, we study the simian immunodeficiency virus (SIV) to determine the molecular basis for the development of HIV CNS, pulmonary and cardiac disease.

    Research projects include studies of viral molecular genetics and host cell genes and proteins involved in the pathogenesis of disease. We are also interested in studies of lentivirus replication in macrophages and astrocytes and their role in the development of disease. These studies have led us to identify the viral genes that are important in neurovirulence of SIV and the development of CNS disease including NEF and the TM portion of ENV. The mechanisms of the action of these proteins in the CNS are complex and are under investigation. We have also developed a rapid, consistent SIV/macaque model in which we can test the ability of various antiviral and neuroprotective agents to reduce the severity of CNS and ...pulmonary disease. view more

    Research Areas: HIV, genomics, pulmonology, SIV, cardiology, lentivirus

    Principal Investigator

    Janice Clements, Ph.D.

    Department

    Molecular and Comparative Pathobiology

  • Ruth Faden Lab

    Research in the Ruth Faden Lab focuses on biomedical ethics and health policy. Our specific areas of interest include justice theory; national and global challenges in learning health care systems, health-system design and priority setting; access global investments benefits in biomedical research; and ethical challenges in biomedical science and women’s health.

    Research Areas: genetics, biomedical engineering, health care policy, women's health, bioethics

    Principal Investigator

    Ruth Faden, Ph.D.

    Department

    Medicine

  • Ryuya Fukunaga Lab

    The Fukunaga Lab uses multidisciplinary approaches to understand the cell biology, biogenesis and function of small silencing RNAs from the atomic to the organismal level.

    The lab studies how small silencing RNAs, including microRNAs (miRNAs), small interfering RNAs (siRNAs) and piwi-interacting RNAs (piRNAs), are produced and how they function. Mutations in the small RNA genes or in the genes involved in the RNA pathways cause many diseases, including cancers. We use a combination of biochemistry, biophysics, fly genetics, cell culture, X-ray crystallography and next-generation sequencing to answer fundamental biological questions and also potentially lead to therapeutic applications to human diseases.

    Research Areas: biophysics, biochemistry, cell biology, cell culture, genomics, RNA

    Principal Investigator

    Ryuya Fukunaga, Ph.D.

    Department

    Biological Chemistry

  • Saraswati Sukumar Lab

    Our lab is focused on using comprehensive gene expression, methylation and sequencing and metabolomics analysis to identify alterations in breast cancer, and exploiting these for early detection and therapy. Among deferentially expressed genes, our lab has focused on the HOX genes. HOX genes are intimately involved in the development of resistance to both chemotherapy and to agents targeting the estrogen receptor. Our work explores the alternate pathways that are activated by HOX proteins leading to this resistance and novel treatments to overcome resistance in both tissue culture and xenograft models. In addition, epigenetically silenced genes and a metabolic reprogramming in tumors also trigger novel early detection and therapeutic strategies. We are testing the utility of differentiation therapy through reactivating RAR-beta in breast cancer using histone deacetylase inhibitors with great success. Also, we are targeting enzymes involved in gluconeogenesis and glycolysis with small ...molecule FDA-approved antimetabolites to achieve antitumor effects. view more

    Research Areas: breast cancer, genetics

    Lab Website

    Principal Investigator

    Saraswati Sukumar, Ph.D.

    Department

    Oncology

  • Shanthini Sockanathan Laboratory

    The Shanthini Sockanathan Laboratory uses the developing spinal cord as our major paradigm to define the mechanisms that maintain an undifferentiated progenitor state and the molecular pathways that trigger their differentiation into neurons and glia. The major focus of the lab is the study of a new family of six-transmembrane proteins (6-TM GDEs) that play key roles in regulating neuronal and glial differentiation in the spinal cord. We recently discovered that the 6-TM GDEs release GPI-anchored proteins from the cell surface through cleavage of the GPI-anchor. This discovery identifies 6-TM GDEs as the first vertebrate membrane bound GPI-cleaving enzymes that work at the cell surface to regulate GPI-anchored protein function. Current work in the lab involves defining how the 6-TM GDEs regulate cellular signaling events that control neuronal and glial differentiation and function, with a major focus on how GDE dysfunction relates to the onset and progression of disease. To solve the...se questions, we use an integrated approach that includes in vivo models, imaging, molecular biology, biochemistry, developmental biology, genetics and behavior. view less

    Research Areas: glia, biochemistry, neurons, imaging, developmental biology, genomics, spinal cord, behavior, molecular biology

    Lab Website

    Principal Investigator

    Shanthini Sockanathan, D.Phil.

    Department

    Neuroscience

  • Sharon Kingsland Lab

    The Sharon Kingsland Lab conducts research focused on the history of modern life sciences. Our team is currently studying the history of ecology and environmental problems in the immediate post-war period, both in the United States and internationally. Our goal is to better understand physiological ecology and the relationship between ecology and agriculture. We are also investigating the design of new laboratories for environmental sciences; emerging environmental problems such as photochemical smog; and the overlap of environmental and molecular sciences.

    Research Areas: history of biology, genetics, pollution, agriculture, environment, ecology

    Principal Investigator

    Sharon Kingsland, Ph.D.

    Department

    History of Medicine

  • Shyam Sundar Biswal Lab

    xResearch in the Shyam Biswal Lab focuses on therapeutic resistance of cancer due to a gain-of-function mutation in transcription factor Nrf2. Using patient-derived xenografts in humanized immunocompetent mice and GEM models, we aim to understand the mechanisms of oncogenic cooperation and metabolic adaptation in cancer cells. We’re also investigating the systemic and pulmonary effects of air pollution as well as the health effects of recent tobacco products, such as electronic cigarettes and water pipes.

    Research Areas: Nrf2, tobacco use, genetics, cancer, pulmonary medicine, environment, lung cancer

    Principal Investigator

    Shyam Biswal, Ph.D.

    Department

    Medicine

  • Srinivasan Yegnasubramanian Lab

    Dr. Yegnasubramanian directs a Laboratory of Cancer Molecular Genetics and Epigenetics at the Sidney Kimmel Comprehensive Cancer Center (SKCCC), and is also the Director of the SKCCC Next Generation Sequencing Center.


    Our lab research is focused on understanding the complex interplay between genetic and epigenetic alterations in carcinogenesis and disease progression, and to exploit this understanding in developing novel biomarkers for diagnosis and risk stratification as well as in identifying targets for therapeutic intervention.

    Research Areas: cancer therapies, biomarkers, genetics, cancer, epigenetics

  • Tamara O'Connor Lab

    The O'Connor Lab studies the molecular basis of infectious disease using Legionella pneumophila pathogenesis as a model system.

    We are looking at the network of molecular interactions acting at the host-pathogen interface. Specifically, we use L. pneumophila pathogenesis to examine the numerous mechanisms by which an intracellular bacterial pathogen can establish infection, how it exploits host cell machinery to accomplish this, and how individual proteins and their component pathways coordinately contribute to disease.

    We are also studying the role of environmental hosts in the evolution of human pathogens. Using genetics and functional genomics, we compare and contrast the repertoires of virulence proteins required for growth in a broad assortment of hosts, how the network of molecular interactions differs between hosts, and the mechanisms by which L. pneumophila copes with this variation.

    Research Areas: infectious disease, Legionella pneumophila, genomics, pathogenesis, molecular biology

    Principal Investigator

    Tamara O'Connor, Ph.D.

    Department

    Biological Chemistry

  • The Arking Lab

    The Arking Lab studies the genomics of complex human disease, with the primary goal of identifying and characterizing genetics variants that modify risk for human disease. The group has pioneered the use of genome-wide association studies (GWAS), which allow for an unbiased screen of virtually all common genetic variants in the genome. The lab is currently developing improved GWAS methodology, as well as exploring the integration of additional genome level data (RNA expression, DNA methylation, protein expression) to improve the power to identify specific genetic influences of disease.

    The Arking Lab is actively involved in researching:
    • autism, a childhood neuropsychiatric disorder
    • cardiovascular genomics, with a focus on electrophysiology and sudden cardiac death (SCD)
    • electrophysiology is the study of the flow of ions in biological tissues

    Dan E. Arking, PhD, is an associate professor at the McKusick-Nathans Institute of Genetic Medicine and Department of Medicine, D...ivision of Cardiology, Johns Hopkins University. view more

    Research Areas: autism, genetics, aging, cardiovascular diseases, sudden cardiac death

    Principal Investigator

    Dan Arking, Ph.D.

    Department

    Medicine

  • The Bigos Lab

    The Bigos Lab focuses on a Precision Medicine approach to the treatment of psychiatric illness. In addition, this lab employs functional neuroimaging and genetics as biomarkers in neuropsychiatric drug development. A recent study used functional MRI to test the neural effects of a drug with the potential to treat cognitive dysfunction in schizophrenia. Other studies aim to identify patient-specific variables including sex, race, and genetics that impact drug clearance and clinical response to better select and dose antipsychotics and antidepressants.

    Research Areas: cognition, brain disorders, schizophrenia, mental illness, fMRI, pharmacogenomics, neuroimaging

  • The Hillel Lab

    The Hillel Laboratory at Johns Hopkins investigates inflammatory, genetic, and molecular factors involved with laryngotracheal stenosis, or scar formation in the airway. Specifically, we are examining the interrelationship between genetics, the immune system, bacteria, and scar formation in the airway. The lab has developed unique models to study laryngotracheal stenosis and test drugs that may halt the progression of scar or reverse scar formation. We are also developing a drug-eluting stent to treat patients with laryngotracheal stenosis.

    Research Areas: complex airway disorders, laryngotracheal stenosis

  • The Howard and Georgeanna Seegar Jones Reproductive Endocrinology Lab

    Research in the Howard and Georgeanna Seegar Jones Reproductive Endocrinology Lab supports a broad interest in reproductive conditions, but has a particular focus on endometriosis, uterine fibroids, polycystic ovary syndrome (PCOS) and genes causing infertility. PCOS and uterine fibroids are among the most prevalent conditions leading to infertility and diseases in women, but both remain poorly understood. Studying these areas may lead to the development of new treatments or preventative therapies.

    Research Areas: uterine fibroids, endometriosis, genetics, infertility, polycystic ovarian syndrome, ovarian cancer

    Lab Website

    Principal Investigator

    James Segars, M.D.

    Department

    Gynecology and Obstetrics

  • William B. Isaacs Laboratory

    Prostate cancer is the most commonly diagnosed malignancy in men in the United States, although our understanding of the molecular basis for this disease remains incomplete. We are interested in characterizing consistent alterations in the structure and expression of the genome of human prostate cancer cells as a means of identifying genes critical in the pathways of prostatic carcinogenesis.

    We are focusing on somatic genomic alterations occurring in sporadic prostate cancers, as well as germline variations which confer increases in prostate cancer risk. Both genome wide and candidate gene approaches are being pursued, and cancer associated changes in gene expression analyses of normal and malignant prostate cells are being cataloged as a complementary approach in these efforts.

    It is anticipated that this work will assist in providing more effective methodologies to identify men at high risk for this disease, in general, and in particular, to identify new markers of prognostic... and therapeutic significance that could lead to more effective management of this common disease. view more

    Research Areas: cell biology, prostate cancer, molecular genetics

    Lab Website

    Principal Investigator

    William Isaacs, Ph.D.

    Department

    Urology

  • Zack Wang Lab

    The Wang lab focuses on the signals that direct the differentiation of pluripotent stem cells, such as induced-pluripotent stem (iPS) cells, into hematopoietic and cardiovascular cells. Pluripotent stem cells hold great potential for regenerative medicine. Defining the molecular links between differentiation outcomes will provide important information for designing rational methods of stem cell manipulation.

    Research Areas: pluripotent stem cells, stem cells, molecular genetics, stem cell biology, gene therapy

    Principal Investigator

    Zack Wang, Ph.D.

    Department

    Medicine

  • Zhaozhu Qiu Laboratory

    Ion channels are pore-forming membrane proteins gating the flow of ions across the cell membrane. Among their many functions, ion channels regulate cell volume, control epithelial fluid secretion, and generate the electrical impulses in our brain. The Qiu Lab employs a multi-disciplinary approach including high-throughput functional genomics, electrophysiology, biochemistry, and mouse genetics to discover novel ion channels and to elucidate their role in health and disease.

    Research Areas: ion channel, neurological disease, electrophysiology, functional genomics, sensory neuroscience

    Lab Website

    Principal Investigator

    Zhaozhu Qiu, Ph.D.

    Department

    Neuroscience
    Physiology

  1. 1