Skip Navigation

Find a Research Lab

Research Lab Results for gene therapy

Displaying 1 to 4 of 4 results
Results per page:
  • Brain Tumor Laboratory

    Lab Website
    Principal Investigator:
    Henry Brem, M.D.
    Neurology
    Neurosurgery

    At the brain tumor laboratory, Henry Brem, M.D. and Betty Tyler, along with more than 350 train...ees, have conducted scientific research, contributed to scientific literature, amended clinical practice, and illuminated new pathways for improving clinical outcomes.



    The laboratory has advanced the understanding of gene therapy, angiogenesis, intracranial implantation of biodegradable polymers to treat malignant glioma, tumor genetics and proteomics, microchip drug delivery and drug resistance studies. Dr. Brem and his colleagues have designed and led many multi-institutional clinical trials to improve and expand the range of therapeutic options for patients with brain tumors.
    view more

    Research Areas: brain tumor drug delivery, brain tumor
  • Green Group

    Lab Website

    The Green Group is the biomaterials and drug delivery laboratory in the Biomedical Engineering ...Department at the Johns Hopkins University School of Medicine. Our broad research interests are in cellular engineering and in nanobiotechnology. We are particularly interested in biomaterials, controlled drug delivery, stem cells, gene therapy, and immunobioengineering. We are working on the chemistry/biology/engineering interface to answer fundamental scientific questions and create innovative technologies and therapeutics that can directly benefit human health. view more

    Research Areas: nanobiotechnology, stem cells, biomedical engineering, drugs, immunobioengineering
  • Liudmila Cebotaru Lab

    Principal Investigator:
    Liudmila Cebotaru, M.D., J.D.
    Medicine

    Research in the Liudmila Cebotaru Lab studies cystic fibrosis transmembrane conductance regulat...or (CFTR) mutants. We also investigate corrector molecules that are currently in clinical trials to get a better understanding of their mechanism of action. A major focus of our research is on developing more efficient gene therapy vectors with the ultimate goal of developing a gene therapy for cystic fibrosis. view more

    Research Areas: cell biology, cystic fibrosis, kidney diseases, gene therapy, corrector molecules
  • Vestibular NeuroEngineering Lab

    Lab Website

    Research in the Vestibular NeuroEngineering Lab (VNEL) focuses on restoring inner ear function ...through “bionic” electrical stimulation, inner ear gene therapy, and enhancing the central nervous system’s ability to learn ways to use sensory input from a damaged inner ear. VNEL research involves basic and applied neurophysiology, biomedical engineering, clinical investigation and population-based epidemiologic studies. We employ techniques including single-unit electrophysiologic recording; histologic examination; 3-D video-oculography and magnetic scleral search coil measurements of eye movements; microCT; micro MRI; and finite element analysis. Our research subjects include computer models, circuits, animals and humans. For more information about VNEL, click here.
    VNEL is currently recruiting subjects for two first-in-human clinical trials:
    1) The MVI Multichannel Vestibular Implant Trial involves implantation of a “bionic” inner ear stimulator intended to partially restore sensation of head movement. Without that sensation, the brain’s image- and posture-stabilizing reflexes fail, so affected individuals suffer difficulty with blurry vision, unsteady walking, chronic dizziness, mental fogginess and a high risk of falling. Based on designs developed and tested successfully in animals over the past the past 15 years at VNEL, the system used in this trial is very similar to a cochlear implant (in fact, future versions could include cochlear electrodes for use in patients who also have hearing loss). Instead of a microphone and cochlear electrodes, it uses gyroscopes to sense head movement, and its electrodes are implanted in the vestibular labyrinth. For more information on the MVI trial, click here.
    2) The CGF166 Inner Ear Gene Therapy Trial involves inner ear injection of a genetically engineered DNA sequence intended to restore hearing and balance sensation by creating new sensory cells (called “hair cells”). Performed at VNEL with the support of Novartis and through a collaboration with the University of Kansas and Columbia University, this is the world’s first trial of inner ear gene therapy in human subjects. Individuals with severe or profound hearing loss in both ears are invited to participate. For more information on the CGF166 trial, click here.
    view more

    Research Areas: neuroengineering, audiology, multichannel vestibular prosthesis, balance disorders, balance, vestibular, prosthetics, cochlea, vestibular implant
  1. 1
Create lab profile
Edit lab profile
back to top button