Find a Research Lab

Enter a research interest, principal investigator or keyword

Displaying 1 to 15 of 15 results for gastrointestinal

Show: 10 · 20 · 50

  1. 1
  • Center for Nanomedicine

    The Center for Nanomedicine engineers drug and gene delivery technologies that have significant implications for the prevention, treatment and cure of many major diseases facing the world today. Specifically, we are focusing on the eye, central nervous system, respiratory system, women's health, gastrointestinal system, cancer, and inflammation.

    We are a unique translational nanotechnology effort located that brings together engineers, scientists and clinicians working under one roof on translation of novel drug and gene delivery technologies

    Research Areas: central nervous system, respiratory system, nanotechnology, cancer, drugs, women's health, inflammation, eye, gastrointestinal

    Lab Website

    Principal Investigator

    Justin Hanes, Ph.D.

    Department

    Ophthalmology

  • Craig W. Hendrix Lab

    Research in the Craig W. Hendrix Lab concentrates on the chemoprevention of HIV infection, clinical pharmacology of antiviral drugs, drug interactions, and oral, topical and injectable HIV microbicide development. Our lab conducts small, intensive sampling studies of PK and PD of drugs for HIV prevention with a focus on developing methods to better understand HIV and drug distribution in the male genital tract, female genital tract and lower gastrointestinal tract. We also support numerous HIV pre-exposure prophylaxis development studies from phase I to phase III, largely as leader of the Pharmacology Core Laboratory of both the Microbicide Trial Network and HIV Prevention Trials Network.

    Research Areas: antiretroviral therapies, infectious disease, HIV, drugs

    Principal Investigator

    Craig W. Hendrix, M.D.

    Department

    Medicine

  • Florin Selaru Lab

    Research interests in the Florin Selaru Lab comprise the molecular changes associated with the transition from inflammatory states in the GI tract (colon, stomach, biliary tree) to frank cancers. In addition, our current research—funded by the AGA, FAMRI and the Broad Foundation—works to further the understanding of cancer development and progression in the gastrointestinal tract.

    Research Areas: gastroenterology, cancer, inflammation, molecular biology

    Principal Investigator

    Florin Selaru, M.D.

    Department

    Medicine

  • Francis Giardiello Lab

    Research in the Francis Giardiello Lab focuses on the study of cancer and cancer chemoprevention in the gastrointestinal tract. This has included the investigation of the genetic basis of familial colorectal cancer and the use of genetic testing in the hereditary forms of colorectal cancer. We have a continuing interest in the study of the genotypic-phenotypic correlations in polyposis syndromes, which include familial adenomatous polyposis, juvenile polyposis and Peutz-Jeghers syndrome.

    Research Areas: gastrointestinal system, colorectal cancer, cancer, genomics, polyposis syndromes

    Principal Investigator

    Francis Giardiello, M.D.

    Department

    Medicine

  • GI Biomarkers Laboratory

    The GI Biomarkers Laboratory studies gastrointestinal cancer and pre-cancer biogenesis and biomarkers. The lab is led by Dr. Stephen Meltzer, who is known for his research in the molecular pathobiology of gastrointestinal malignancy and premalignancy. Research in the lab has led to several groundbreaking genomic, epigenomic and bioinformatic studies of esophageal and colonic neoplasms, shifting the gastrointestinal research paradaigm toward genome-wide approaches.

    Research Areas: gastrointestinal system, biomarkers, cancer, epigenetics, genomics, bioinformatics, biogenesis

    Lab Website

    Principal Investigator

    Stephen Meltzer, M.D.

    Department

    Medicine

  • GI Early Detection Biomarkers Lab

    Dr. Meltzer is an internationally renowned leader in the molecular pathobiology of gastrointestinal malignancy and premalignancy. He invented molecular methods to detect loss of heterozygosity in tiny biopsies, triggering an avalanche of research on precancerous lesions. He was the first to comprehensively study coding region microsatellite instability, leading to the identification of several important tumor suppressor genes. He performed several groundbreaking genomic, epigenomic and bioinformatic studies of esophageal and colonic neoplasms, shifting the GI research paradigm toward genome-wide approaches. He directed an ambitious nationwide validation study of DNA methylation-based biomarkers for the prediction of neoplastic progression in Barrett’s esophagus.

    Dr. Meltzer founded and led the Aerodigestive Cancer and Biomarker Interdisciplinary Programs at the University of Maryland, also becoming associate director for core sciences at that school’s Cancer Center. He currently hol...ds an endowed professorship and is the director of GI biomarker research at Johns Hopkins.

    The laboratory group focuses its efforts on the molecular genetics of gastrointestinal cancers and premalignant lesions, as well as on translational research to improve early detection, prognostic evaluation, and treatment of these conditions. Below, some examples of this work are described.
    view less

    Research Areas: gastrointestinal cancer, gastrointestinal

    Principal Investigator

    Stephen Meltzer, M.D.

    Department

    Medicine

  • IBD and Autoimmune Liver Diseases Laboratory

    Investigators in the IBD and Autoimmune Liver Diseases Laboratory conduct basic and translational research in inflammatory bowel disease (IBD) and autoimmune liver diseases. One area of focus is discovering and developing biomarkers for diagnosing and prognosticating IBD and other autoimmune liver diseases (AILDs). We also are exploring the molecular pathogenesis of—and developing novel therapies for—IBD. In addition, we are working to understand the molecular reason why many IBD patients fail to respond to mainstay drug therapies—and to develop diagnostic assays that can predict non-responders before starting them on those therapies. These biomarker studies have led to our application for four U.S. and international patents.

    Research Areas: inflammatory bowel disease, Crohn’s disease, gastrointestinal system, colitis, autoimmune diseases, pathogenesis, celiac disease, liver diseases

    Lab Website

    Principal Investigator

    Xu Li, Ph.D.

    Department

    Medicine

  • Linda Lee Lab

    The Linda Lee Lab studies care of complex cancer patients who had liver or gastrointestinal issues. Our previous work includes studying the function of a cancer protein called Myc in liver cancer.

    Research Areas: cancer, gastrointestinal

    Principal Investigator

    Linda Lee, M.D.

    Department

    Medicine

  • Mark Donowitz Lab

    Research in the Mark Donowitz Lab is primarily focused on the development of drug therapy for diarrheal disorders, intestinal salt absorption and the proteins involved including their regulation, and the use of human enteroids to understand intestinal physiology and pathophysiology. We study two gene families initially recognized by this laboratory: mammalian Na/H exchangers and the subgroup of PDZ domain containing proteins present in the brush border of epithelial cells called NHERF family. A major finding is that NHE3 exists simultaneously in different sized complexes in the brush border, which change separately as part of signal transduction initiated by mimics of the digestive process. Relevance to the human intestine is being pursued using mini-human intestine made from Lgr5+ stems cells made from intestinal biopsies and measuring function via two-photon microscopy.

    Research Areas: gastrointestinal system, gastroenterology, pathophysiology, diarrhea, drugs, physiology

    Lab Website

    Principal Investigator

    Mark Donowitz, M.D.

    Department

    Medicine

  • Saowanee Ngamruengphong Lab

    Research in the Saowanee Ngamruengphong Lab focuses on methods for diagnosing and managing gastrointestinal conditions, including premalignant and malignant lesions of the gastrointestinal tract, esophageal cancer, colon polyps, and biliary and pancreatic disease. Our most recent work includes investigating a novel hybrid technique for closure of refractory gastrocutaneous fistula. We also conducted an international multicenter study that compared endoscopic ultrasound-guided pancreatic duct drainage with enteroscopy-assisted endoscopic retrograde pancreatography following Whipple surgery.

    Research Areas: colon polyps, cancer, endoscopy, pancreatic disease, gastric cancer, ultrasound, gastrointestinal

    Principal Investigator

    Saowanee Ngamruengphong, M.D.

    Department

    Medicine

  • Susan Hutfless Lab

    The Susan Hutfless Lab uses administrative data to investigate epidemiologic questions about the causes of and treatments for chronic diseases, with a focus on gastrointestinal disorders. Our team has provided epidemiologic expertise to help design and analyze large-dataset studies of cervical cancer, colorectal cancer and mortality related to inflammatory bowel disease (IBD). We also have conducted research on infection-related triggers of Crohn’s disease in susceptible military personnel as well as prenatal and childhood predictors of pediatric-onset IBD.

    Research Areas: inflammatory bowel disease, Crohn’s disease, epidemiology, data analysis, maternal health, chronic disease, gastrointestinal

    Principal Investigator

    Susan Hutfless, Ph.D., S.M.

    Department

    Medicine

  • The Burns Lab

    Our research laboratory studies the roles mobile DNAs play in human disease. Our group was one of the first to develop a targeted method for amplifying mobile DNA insertion sites in the human genome, and we showed that these are a significant source of structural variation (Huang et al., 2010). Since that time, our group has continued to develop high throughput tools to characterize these understudied sequences in genomes and to describe the expression and genetic stability of interspersed repeats in normal and malignant tissues. We have developed a monoclonal antibody to one of the proteins encoded for by Long INterspersed Element-1 (LINE-1) and showed its aberrant expression in a wide breadth of human cancers (Rodi? et al., 2014). We have demonstrated acquired LINE-1 insertion events during the evolution of metastatic pancreatic ductal adenocarcinoma and other gastrointestinal tract tumors (Rodi? et al., 2015). We have major projects focused on studying functional consequences of inh...erited sequence variants, and exciting evidence that these predispose to cancer risk and other disease phenotypes. Our laboratory is using a combination of genome wide association study (GWAS) analyses, custom RNA-seq analyses, semi-high throughput gene expression reporter assays, and murine models to pursue this hypothesis. view more

    Research Areas: cancer, DNA, malignant tumors

    Lab Website

    Principal Investigator

    Kathleen Burns, M.D., Ph.D.

    Department

    Pathology

  • The Hackam Lab for Pediatric Surgical, Translational and Regenerative Medicine

    David Hackam’s laboratory focuses on necrotizing enterocolitis (NEC), a devastating disease of premature infants and the leading cause of death and disability from gastrointestinal disease in newborns.

    The disease strikes acutely and without warning, causing sudden death of the small and large intestines. In severe cases, tiny patients with the disease are either dying or dead from overwhelming sepsis within 24 hours. Surgical treatment to remove most of the affected gut results in lifelong short gut (short bowel) syndrome.

    The Hackam Lab has identified a critical role for the innate immune receptor toll-like receptor 4 (TLR4) in the pathogenesis of necrotizing enterocolitis. The lab has shown that TLR4 regulates the development of the disease by tipping the balance between injury and repair in the stressed intestine of the premature infant. Developing an Artificial Intestine A key goal is to create, in the laboratory, new intestines made from patients’ own cells, which can then ...be implanted into the patient to restore normal digestive function. This innovative design could transform child development and quality of life in necrotizing enterocolitis survivors without the risks of conventional donor transplant. view more

    Research Areas: necrotizing enterocolitis, gut inflammation, stem cell biology, premature infants, TLR4

    Lab Website

    Principal Investigator

    David Hackam, M.D., Ph.D.

    Department

    Pediatrics
    Surgery

  • Zhiping Li Lab

    The Zhiping Li Lab focuses on the pathogenesis of nonalcoholic fatty liver disease and immune-mediated liver injury. Our active research focuses on the dietary modulation of gut bacteria, liver innate immune system and their regulation on tissue injury and repair. Clinical research from the lab focuses on cirrhotic ascites, liver transplant, hepatocellular carcinoma and immune-mediated liver diseases as well as endoscopic techniques and interventions.

    Research Areas: gastrointestinal system, gut bacteria, nutrition, obesity, pathogenesis, liver diseases

    Principal Investigator

    Zhiping Li, M.D.

    Department

    Medicine

  • Zsuzsanna McMahan Lab

    The Zsuzsanna McMahan Lab conducts translational research that seeks to identify the novel antigens in scleroderma and to define the target tissue in this disease. We are conducting two active clinical research trials, including one that studies skin biopsy specimens as biomarkers of scleroderma and the response to mycophenolate mofetil (MMF or Cellcept). The other study is a gastrointestinal involvement registry that follows patients who are experiencing GERD, small bowel bacterial overgrowth, constipation, fecal incontinence and gastroparesis to see if there is improvement in symptoms after a change in treatment is implemented.

    Research Areas: gastrointestinal system, rheumatology, biomarkers, scleroderma, antigens, mycophenolate mofetil

    Lab Website

    Principal Investigator

    Zsuzsanna McMahan, M.D., M.H.S.

    Department

    Medicine

  1. 1