Skip Navigation

Find a Research Lab

Research Lab Results for eye

Displaying 1 to 8 of 8 results
Results per page:
  • Auditory Brainstem Laboratory

    Lab Website

    The overall goal of the Auditory Brainstem Library is to understand how abnormal auditory input... from the ear affects the brainstem, and how the brain in turn affects activity in the ear through efferent feedback loops. Our emphasis is on understanding the effects of different forms of acquired hearing loss (genetic, conductive, noise-induced, age-related, traumatic brain injury-related) and environmental noise. We are particularly interested in plastic changes in the brain that compensate for some aspects of altered auditory input, and how those changes relate to central auditory processing deficits, tinnitus, and hyperacusis. Understanding these changes will help refine therapeutic strategies and identify new targets for treatment. We collaborate with other labs in the Depts. of Otolaryngology, Neuroscience, Neuropathology, the Wilmer Eye Institute, and the Applied Physics Laboratory at Johns Hopkins, in addition to labs outside the university to increase the impact and clinical relevance of our research. view more

    Research Areas: hearing disorders, compound action potentials, auditory brainstem response, otoacoustic emissions, operation conditions, audiology, acoustic startle modification, hearing, neurology
  • Center for Nanomedicine

    Lab Website
    Principal Investigator:
    Justin Hanes, Ph.D.
    Ophthalmology

    The Center for Nanomedicine engineers drug and gene delivery technologies that have significant... implications for the prevention, treatment and cure of many major diseases facing the world today. Specifically, we are focusing on the eye, central nervous system, respiratory system, women's health, gastrointestinal system, cancer, and inflammation.

    We are a unique translational nanotechnology effort located that brings together engineers, scientists and clinicians working under one roof on translation of novel drug and gene delivery technologies
    view more

    Research Areas: central nervous system, respiratory system, nanotechnology, cancer, drugs, women's health, inflammation, eye, gastrointestinal
  • Neuro-Vestibular and Ocular Motor Laboratory

    Principal Investigator:
    Amir Kheradmand, M.D.
    Neurology

    In our laboratory we study the brain mechanisms of eye movements and spatial orientation.

    -H...ow magnetic stimulation through transcranial devices affects cortical brain regions
    -Neural mechanisms underlying balance, spatial orientation and eye movement
    -Mathematical models that describe the function of ocular motor systems and perception of spatial orientation
    -Short- and long-term adaptive processes underlying compensation for disease and functional recovery in patients with ocular motor, vestibular and perceptual dysfunction
    Developing and testing novel diagnostic tools, treatments, and rehabilitative strategies for patients with ocular motor, vestibular and spatial dysfunction
    view more

    Research Areas: perception of spatial orientation, ocular motor physiology
  • Ocular Motor Physiology Laboratory

    Lab Website

    Our research is directed toward how the brain controls the movements of the eyes (including eye... movements induced by head motion) using studies in normal human beings, patients and experimental animals. The focus is on mechanisms underlying adaptive ocular motor control. More specifically, what are mechanisms by which the brain learns to cope with the changes associated with normal development and aging as well as the damage associated with disease and trauma? How does the brain keep its eye movement reflexes properly calibrated? Our research strategy is to make accurate, quantitative measures of eye movements in response to precisely controlled stimuli and then use the analytical techniques of the control systems engineer to interpret the findings.

    Research areas: 1) learning and compensation for vestibular disturbances that occur either within the labyrinth or more centrally within the brain, 2) the mechanisms by which the brain maintains correct alignment of the eyes to prevent diplopia and strabismus, and 3) the role of ocular proprioception in localizing objects in space for accurate eye-hand coordination.
    view more

    Research Areas: diplopia, Labyrinth, eye movement, strabismus, vestibular
  • Safety and Functionality Eye Research (SAFER)

    Lab Website
    Principal Investigator:
    Pradeep Ramulu, M.D., Ph.D.
    Ophthalmology

    The SAFER lab is studying how the home environment affects a person’s fall risk and functionali...ty at home.
    view more

    Research Areas: ophthalmology
  • The Swenor Research Group

    Lab Website

    The Swenor Research Group focuses on examining the interrelationship between vision loss and ag...ing. This includes determining the effects of visual impairment and eye disease on physical and cognitive functioning in older adults, and identifying interventions that could enhance the health of older adults with visual impairment and eye disease. view more

    Research Areas: cognitive functioning, access to care, vision impairment, reading, frailty, physical functioning, dual sensory impairment
  • Vestibular NeuroEngineering Lab

    Lab Website

    Research in the Vestibular NeuroEngineering Lab (VNEL) focuses on restoring inner ear function ...through “bionic” electrical stimulation, inner ear gene therapy, and enhancing the central nervous system’s ability to learn ways to use sensory input from a damaged inner ear. VNEL research involves basic and applied neurophysiology, biomedical engineering, clinical investigation and population-based epidemiologic studies. We employ techniques including single-unit electrophysiologic recording; histologic examination; 3-D video-oculography and magnetic scleral search coil measurements of eye movements; microCT; micro MRI; and finite element analysis. Our research subjects include computer models, circuits, animals and humans. For more information about VNEL, click here.
    VNEL is currently recruiting subjects for two first-in-human clinical trials:
    1) The MVI Multichannel Vestibular Implant Trial involves implantation of a “bionic” inner ear stimulator intended to partially restore sensation of head movement. Without that sensation, the brain’s image- and posture-stabilizing reflexes fail, so affected individuals suffer difficulty with blurry vision, unsteady walking, chronic dizziness, mental fogginess and a high risk of falling. Based on designs developed and tested successfully in animals over the past the past 15 years at VNEL, the system used in this trial is very similar to a cochlear implant (in fact, future versions could include cochlear electrodes for use in patients who also have hearing loss). Instead of a microphone and cochlear electrodes, it uses gyroscopes to sense head movement, and its electrodes are implanted in the vestibular labyrinth. For more information on the MVI trial, click here.
    2) The CGF166 Inner Ear Gene Therapy Trial involves inner ear injection of a genetically engineered DNA sequence intended to restore hearing and balance sensation by creating new sensory cells (called “hair cells”). Performed at VNEL with the support of Novartis and through a collaboration with the University of Kansas and Columbia University, this is the world’s first trial of inner ear gene therapy in human subjects. Individuals with severe or profound hearing loss in both ears are invited to participate. For more information on the CGF166 trial, click here.
    view more

    Research Areas: neuroengineering, audiology, multichannel vestibular prosthesis, balance disorders, balance, vestibular, prosthetics, cochlea, vestibular implant
  • Vestibular Neurophysiology Laboratory

    Lab Website

    The mission of the laboratory of vestibular neurophysiology is to advance the understanding of ...how the body perceives head motion and maintains balance - a complex and vital function of everyday life. Although much is known about the vestibular part of the inner ear, key aspects of how the vestibular receptors perceive, process and report essential information are still mysterious. Increasing our understanding of this process will have tremendous impact on quality of life of patients with vestibular disorders, who often suffer terrible discomfort from dizziness and vertigo.

    The laboratory group's basic science research focuses on the vestibulo-ocular reflexes - the reflexes that move the eyes in response to motions of the head. They do this by studying the vestibular sensors and nerve cells that provide input to the reflexes; by studying eye movements in humans and animals with different vestibular disorders, by studying effects of electrical stimulation of vestibular sensors, and by using mathematical models to describe these reflexes. Researchers are particularly interested in abnormalities of the brain's inability to compensate for vestibular disorders.

    view more

    Research Areas: vestibular disorders, vertigo, balance, dizziness
  1. 1
Create lab profile
Edit lab profile
back to top button