Find a Research Lab

Enter a research interest, principal investigator or keyword

Displaying 11 to 16 of 16 results for enzymes

Show: 10 · 20 · 50

  1. 1
  2. 2
  • Sean T. Prigge Lab

    Current research in the Sean T. Prigge Lab explores the biochemical pathways found in the apicoplast, an essential organelle found in malaria parasites, using a combination of cell biology and genetic, biophysical and biochemical techniques. We are particularly focused on the pathways used for the biosynthesis and modification of fatty acids and associated enzyme cofactors, including pantothenate, lipoic acid, biotin and iron-sulfur clusters. We want to better understand how the cofactors are acquired and used, and whether they are essential for the growth of blood-stage malaria parasites.

    Research Areas: biochemistry, enzymes, immunology, apicoplasts, malaria, molecular microbiology

  • Shanthini Sockanathan Laboratory

    The Shanthini Sockanathan Laboratory uses the developing spinal cord as our major paradigm to define the mechanisms that maintain an undifferentiated progenitor state and the molecular pathways that trigger their differentiation into neurons and glia. The major focus of the lab is the study of a new family of six-transmembrane proteins (6-TM GDEs) that play key roles in regulating neuronal and glial differentiation in the spinal cord. We recently discovered that the 6-TM GDEs release GPI-anchored proteins from the cell surface through cleavage of the GPI-anchor. This discovery identifies 6-TM GDEs as the first vertebrate membrane bound GPI-cleaving enzymes that work at the cell surface to regulate GPI-anchored protein function. Current work in the lab involves defining how the 6-TM GDEs regulate cellular signaling events that control neuronal and glial differentiation and function, with a major focus on how GDE dysfunction relates to the onset and progression of disease. To solve the...se questions, we use an integrated approach that includes in vivo models, imaging, molecular biology, biochemistry, developmental biology, genetics and behavior. view more

    Research Areas: glia, biochemistry, neurons, imaging, developmental biology, genomics, spinal cord, behavior, molecular biology

    Lab Website

    Principal Investigator

    Shanthini Sockanathan, D.Phil.

    Department

    Neuroscience

  • Stivers Lab

    The Stivers Lab is broadly interested in the biology of the RNA base uracil when it is present in DNA. Our work involves structural and biophysical studies of uracil recognition by DNA repair enzymes, the central role of uracil in adapative and innate immunity, and the function of uracil in antifolate and fluoropyrimidine chemotherapy. We use a wide breadth of structural, chemical, genetic and biophysical approaches that provide a fundamental understanding of molecular function. Our long-range goal is to use this understanding to design novel small molecules that alter biological pathways within a cellular environment. One approach we are developing is the high-throughput synthesis and screening of small molecule libraries directed at important targets in cancer and HIV-1 pathogenesis.

    Research Areas: biophysics, enzymes, cell biology, uracil, cancer, HIV, DNA, RNA

  • Structural Enzymology and Thermodynamics Group

    The Structural Enzymology and Thermodynamics Group uses a combination of molecular biology, biochemistry and structural biology to understand the catalytic mechanisms of several enzyme families. Additionally, researchers in the group are studying protein-ligand interactions using structural dynamics. They are able to apply their knowledge of the mechanisms of these enzymes and of binding energetics to develop targets for drug design.

    Research Areas: biochemistry, enzymes, structural biology, molecular biology

  • Urban Lab

    The Urban Lab studies rhomboid proteases--a class of enzymes that cut proteins to initiate signaling between cells as a form of communication that organizes embryo development. Current studies in the lab focus on the biophysics of how these enzymes function inside the cell membrane, where it's hard for catalysis to take place. Because rhomboid intramembrane proteolysis plays a central role in malaria infection and Parkinson's disease pathogenesis, these studies may have therapeutic implications.

    Research Areas: enzymes, cell biology, membrane biophysics, structural biology, synthetic chemistry, malaria, Parkinson's disease, rhomboid proteases

  • William G. Nelson Laboratory

    Normal and neoplastic cells respond to genome integrity threats in a variety of different ways. Furthermore, the nature of these responses are critical both for cancer pathogenesis and for cancer treatment. DNA damaging agents activate several signal transduction pathways in damaged cells which trigger cell fate decisions such as proliferation, genomic repair, differentiation, and cell death. For normal cells, failure of a DNA damaging agent (i.e., a carcinogen) to activate processes culminating in DNA repair or in cell death might promote neoplastic transformation. For cancer cells, failure of a DNA damaging agent (i.e., an antineoplastic drug) to promote differentiation or cell death might undermine cancer treatment.

    Our laboratory has discovered the most common known somatic genome alteration in human prostatic carcinoma cells. The DNA lesion, hypermethylation of deoxycytidine nucleotides in the promoter of a carcinogen-defense enzyme gene, appears to result in inactivation of th...e gene and a resultant increased vulnerability of prostatic cells to carcinogens.
    Studies underway in the laboratory have been directed at characterizing the genomic abnormality further, and at developing methods to restore expression of epigenetically silenced genes and/or to augment expression of other carcinogen-defense enzymes in prostate cells as prostate cancer prevention strategies.

    Another major interest pursued in the laboratory is the role of chronic or recurrent inflammation as a cause of prostate cancer. Genetic studies of familial prostate cancer have identified defects in genes regulating host inflammatory responses to infections.
    A newly described prostate lesion, proliferative inflammatory atrophy (PIA), appears to be an early prostate cancer precursor. Current experimental approaches feature induction of chronic prostate inflammation in laboratory mice and rats, and monitoring the consequences on the development of PIA and prostate cancer.
    view less

    Research Areas: cellular biology, cancer, epigenetics, DNA

    Lab Website

    Principal Investigator

    William Nelson, M.D., Ph.D.

    Department

    Oncology

  1. 1
  2. 2