Find a Research Lab

Enter a research interest, principal investigator or keyword

Displaying 1 to 10 of 15 results for enzymes

Show: 10 · 20 · 50

  1. 1
  2. 2
  • Bioenergetics Core

    Mitochondrial dysfunction has long been a consistent observation in Parkinson's disease. To understand the consequences of Parkinson's disease causing genetic mutations on the function of mitochondria, the Bioenergetics Core B will provide the following analyses to the projects in the Udall Center at Johns Hopkins: (1) Measuring rates of respiration, oxygen consumption and ATP generation, (2) Measuring calcium dynamics, (3) Measuring reactive oxygen and reactive nitrogen species, (4) Measuring the activity of the electron transport chain enzymes and metabolic enzymes, and (5) Measuring plasma versus mitochondrial membrane potential and mitochondrial membrane permeability

    Research Areas: enzymes, cell biology, bioenergetics, respiration, Parkinson's disease, mitochondria, neurology

    Lab Website

    Principal Investigator

    Valina Dawson, Ph.D.

    Department

    Neurology

  • Caren L. Freel Meyers Laboratory

    The long-term goal of the Caren L. Freel Meyers Laboratory is to develop novel approaches to kill human pathogens, including bacterial pathogens and malaria parasites, with the ultimate objective of developing potential therapeutic agents.

    Toward this goal, we are pursuing studies of bacterial isoprenoid biosynthetic enzymes comprising the methylerythritol phosphate (MEP) pathway essential in many human pathogens. Studies focus on understanding mechanism and regulation in the pathway toward the development of selective inhibitors of isoprenoid biosynthesis. Our strategies for creating new anti-infective agents involve interdisciplinary research in the continuum of organic, biological and medicinal chemistry. Molecular biology, protein expression and biochemistry, and synthetic chemistry are key tools for our research.

    Research Areas: bacterial pathogens, biochemistry, enzymes, infectious disease, protein expression, synthetic chemistry, isoprenoid biosynthesis, malaria, pharmacology, chemistry, molecular biology

  • Christopher A. Ross Lab

    Dr. Ross and his research team have focused on Huntington's disease and Parkinson's disease, and now are using insights from these disorders to approach more complex diseases such as schizophrenia and bipolar disorder. They use biophysical and biochemical techniques, cell models, and transgenic mouse models to understand disease processes, and to provide targets for development of rational therapeutics. These then can provide a basis for developing small molecule interventions, which can be used both as probes to study biology, and if they have favorable drug-like properties, for potential therapeutic development. We have used two strategies for identifying lead compounds. The first is the traditional path of identification of specific molecular targets, such as enzymes like the LRRK2 kinase of Parkinson’s disease. Once structure is known, computational approaches or fragment based lead discovery, in collaboration, can be used. The second is to conduct phenotypic screens using ce...ll models, or in a collaboration, natural products in a yeast model. Once a lead compound is identified, we use cell models for initial tests of compounds, then generate analogs, and take compounds that look promising to preclinical therapeutic studies in animal models. The ultimate goal is to develop therapeutic strategies that can be brought to human clinical trials, and we have pioneered in developing biomarkers and genetic testing for developing strategies. view more

    Research Areas: psychiatric disorders

  • Daniel Raben Laboratory

    The Raben Laboratory is focused on understanding the biochemistry and chemistry underlying the molecular aspects involved in regulating lipid metabolizing signaling enzymes and the physiological roles of this regulation. Controlling lipid-metabolizing enzymes involves modulating their sub-cellular distribution and their intrinsic enzymatic activity. Researchers in the Raben laboratory examine three families of lipid-metabolizing signaling enzymes: diacylglycerol kinases, phospholipases D, and phospholipases C.

    Research Areas: biochemistry, lipid-metabolizing enzymes, cellular signaling, chemistry

    Principal Investigator

    Daniel Raben, Ph.D.

    Department

    Biological Chemistry

  • Erika Darrah Lab

    The Erika Darrah Lab is primarily interested in the mechanisms underlying the development and progression of autoimmunity in rheumatoid arthritis (RA), with a particular focus on the peptidyl arginine deiminase (PAD) enzymes. We’re focused on understanding the development of PAD4-activating autoantibodies over time and how they contribute to the development of erosive disease. Studies are underway to determine if the newly discovered antibody is mimicking a naturally occurring PAD4 binding partner and to identify potentially pro-inflammatory effects of citrullinated proteins on effector cells of the immune system.

    Research Areas: antibodies, autoimmune diseases, peptidylarginine deiminase enzymes, rheumatoid arthritis

    Lab Website

    Principal Investigator

    Erika Darrah, Ph.D.

    Department

    Medicine

  • Felipe Andrade Laboratory

    Research in the laboratory of Felipe Andrade, M.D., Ph.D., focuses on the mechanisms of systemic autoimmune diseases, particularly as they relate to the role of cytotoxic granule proteases in autoimmunity and viral clearance, mechanisms of autoantigen citrullination and pathways that control immune effector functions in autoimmune diseases. We currently focus on two principal areas: (1) defining the mechanisms that generate citrullinated autoantigens in vivo in rheumatoid arthritis and (2) understanding the pathways that control the activity of the peptidylarginine deiminase (PAD) enzymes in human neutrophils.

    Research Areas: autoantigens, autoimmune diseases, cytotoxic granule proteases, peptidylarginine deiminase enzymes, rheumatoid arthritis

    Principal Investigator

    Felipe Andrade, M.D., Ph.D.

    Department

    Medicine

  • Frueh Laboratory

    The Frueh Laboratory uses nuclear magnetic resonance (NMR) to study how protein dynamics can be modulated and how active enzymatic systems can be conformed. Non-ribosomal peptide synthetases (NRPS) are large enzymatic systems that biosynthesize secondary metabolites, many of which are used by pharmaceutical scientists to produce drugs such as antibiotics or anticancer agents. Dr. Frueh's laboratory uses NMR to study inter- and intra-domain modifications that occur during the catalytic steps of NRPS. Dr. Frueh and his team are constantly developing new NMR techniques to study these complicated enzymatic systems.

    Research Areas: enzymes, proteomics, imaging, drugs, antibiotics, nuclear magnetic resonance, molecular biology

  • Richard F. Ambinder Lab

    Epstein-Barr virus and Kaposi's sarcoma herpesvirus are found in association with a variety of cancers. Our laboratory studies are aimed at better defining the role(s) of the virus in the pathogenesis of these diseases and the development of strategies to prevent, diagnose or treat them. We have become particularly interested in the unfolded protein response in activation of latent viral infection. Among the notions that we are exploring is the possibility that activation of virus-encoded enzymes will allow the targeted delivery of radation. In addition, we are investigating a variety of virus-related biomarkers including viral DNA, antibody responses, and cytokine measurements that may be clinically relevant.

    Research Areas: virology, antiviral therapy

  • Richard John Jones Lab

    The Richard J. Jones Lab studies normal and cancerous stem cells in order to make clinical improvements in areas such as blood and marrow transplantation (BMT). We discovered one of the most common stem-cell markers, Aldefluor, which identifies cells based on their expression of aldehyde dehydrogenase 1 (ALDH1), and have used this marker to detect and characterize normal stem cells and cancer stem cells from many hematologic malignancies. We also developed post-transplant cyclophosphamide and effective related haploidentical BMT.

    Research Areas: enzymes, stem cells, blood and marrow transplantation, leukemia, cancer

    Principal Investigator

    Richard Jones, M.D.

    Department

    Medicine

  • Saraswati Sukumar Lab

    Our lab is focused on using comprehensive gene expression, methylation and sequencing and metabolomics analysis to identify alterations in breast cancer, and exploiting these for early detection and therapy. Among deferentially expressed genes, our lab has focused on the HOX genes. HOX genes are intimately involved in the development of resistance to both chemotherapy and to agents targeting the estrogen receptor. Our work explores the alternate pathways that are activated by HOX proteins leading to this resistance and novel treatments to overcome resistance in both tissue culture and xenograft models. In addition, epigenetically silenced genes and a metabolic reprogramming in tumors also trigger novel early detection and therapeutic strategies. We are testing the utility of differentiation therapy through reactivating RAR-beta in breast cancer using histone deacetylase inhibitors with great success. Also, we are targeting enzymes involved in gluconeogenesis and glycolysis with small ...molecule FDA-approved antimetabolites to achieve antitumor effects. view more

    Research Areas: breast cancer, genetics

    Lab Website

    Principal Investigator

    Saraswati Sukumar, Ph.D.

    Department

    Oncology

  1. 1
  2. 2