Find a Research Lab

Enter a research interest, principal investigator or keyword

Displaying 11 to 20 of 23 results for environment

Show: 10 · 20 · 50

  1. 1
  2. 2
  3. 3
  • James Knierim Laboratory

    Research in the James Knierim Laboratory attempts to understand the flow of information through the hippocampal formation and the computations performed by the various subfields of the hippocampus and its inputs from the entorhinal cortex. To address these issues, we use multi-electrode arrays to record the extracellular action potentials from scores of well-isolated hippocampal neurons in freely moving rats.

    These neurons, or "place cells," are selectively active when the rat occupies restricted locations in its environment and help to form a cognitive map of the environment. The animal uses this map to navigate efficiently in its environment and to learn and remember important locations. These cells are thought to play a major role in the formation of episodic (autobiographical) memories. Place cells thus constitute a tremendous opportunity to investigate the mechanisms by which the brain transforms sensory input into an internal, cognitive representation of the world and then use...s this representation as the framework that organizes and stores memories of past events. view more

    Research Areas: cognition, place cells, memory, neurophysiology, hippocampus

    Principal Investigator

    James Knierim, Ph.D.

    Department

    Neuroscience

  • James Pekar Lab

    How do we see, hear, and think? More specifically, how can we study living people to understand how the brain sees, hears, and thinks? Recently, magnetic resonance imaging (MRI), a powerful anatomical imaging technique widely used for clinical diagnosis, was further developed into a tool for probing brain function. By sensitizing magnetic resonance images to the changes in blood oxygenation that occur when regions of the brain are highly active, we can make "movies" that reveal the brain at work. Dr. Pekar works on the development and application of this MRI technology.

    Dr. Pekar is a biophysicist who uses a variety of magnetic resonance techniques to study brain physiology and function. Dr. Pekar serves as Manager of the F.M. Kirby Research Center for Functional Brain Imaging, a research resource where imaging scientists and neuroscientists collaborate to study brain function using unique state-of-the-art techniques in a safe comfortable environment, to further develop such techni...ques, and to provide training and education. Dr. Pekar works with center staff to serve the center's users and to keep the center on the leading edge of technology.
    view more

    Research Areas: magnetic resonance, functional magnetic resonance imaging, radiology

  • Jantzie Lab

    Dr. Jantzie, associate professor, received her Ph.D. in Neurochemistry from the University of Alberta in 2008. In 2013 she completed her postdoctoral fellowship in the Department of Neurology at Boston Children's Hospital & Harvard Medical School and became faculty at the University of New Mexico. Dr. Jantzie then joined the faculty Departments of Pediatrics (Neonatal-Perinatal Medicine) and Neurology at Johns Hopkins University and the Kennedy Krieger Institute in January 2019. Her lab investigates the pathophysiology of encephalopathy of prematurity, and pediatric brain injury common to infants and toddlers. Dr. Jantzie is dedicated to understanding disease processes in the developing brain as a means to identifying new therapeutic strategies and treatment targets for perinatal brain injury. Her lab studies neural substrates of cognition and executive function, inhibitory circuit formation, the role of an abnormal intrauterine environment on brain development, mechanisms of neurorepa...ir and microglial activation and polarization. Using a diverse array of clinically relevant techniques such as MRI, cognitive assessment, and biomarker discovery, combined with traditional molecular and cellular biology, the Jantzie lab is on the front lines of translational pediatric neuroscience.? view more

    Research Areas: Neonatology, neuroscience

    Principal Investigator

    Lauren Jantzie, Ph.D.

    Department

    Pediatrics

  • Josef Coresh Lab

    Research in the Josef Coresh Lab focuses on cardiovascular epidemiology, kidney disease and genetic epidemiology. Our team uses innovative methods to quantify disease burden and consequences in the population; studies the causes and consequences of vascular disease in the heart, kidneys and brain; and works to develop a strong scientific basis for quantifying the burden, causes and consequences of kidney disease. Working in collaboration with leading laboratories and specialists, we also aim to quantify the interplay of genes and environment in health and disease.

    Research Areas: epidemiology, genetics, kidney diseases, cardiovascular, vascular diseases

    Principal Investigator

    Josef Coresh, M.D., Ph.D.

    Department

    Medicine

  • Laboratory of Auditory Neurophysiology

    Research in the Laboratory of Auditory Neurophysiology aims to understand brain mechanism responsible for auditory perception and vocal communication in a naturalistic environment. We are interested in revealing neural mechanisms operating in the cerebral cortex and how cortical representations of biologically important sounds emerge through development and learning.

    We use a combination of state-of-the-art neurophysiological techniques and sophisticated computational and engineering tools to tackle our research questions.

    Current research in our laboratory includes the following areas (1) neural basis of auditory perception, (2) neural mechanisms for vocal communication and social interaction, and (3) cortical processing of cochlear implant stimulation.

    Research Areas: neurophysiology, neuroengineering, audiology, cochlear implant, learning, language

    Lab Website

    Principal Investigator

    Xiaoqin Wang, Ph.D.

    Department

    Biomedical Engineering

  • Mikhail Pletnikov Laboratory

    The Mikhail Pletnikov Laboratory is interested in the neurobiology of neurodevelopmental diseases such as schizophrenia and autism. The major focus of our laboratory is to evaluate how adverse environmental factors and vulnerable genes interact to affect brain and behavior development. We address these experimental questions by using methods of cell and molecular biology, neuroimmunology, neurochemistry, psychopharmacology and developmental psychobiology. The current projects in our laboratory are: (1) Genetic risk factors in neuron-astrocyte interaction during neurodevelopment, (2) Gene-environment interplay in the pathogenesis of psychiatric conditions, and (3) The neuroimmune interactions in abnormal neurodevelopment

    Research Areas: autism, immunology, neurobiology, cell biology, neurodevelopment, developmental psychobiology, schizophrenia, pharmacology, chemistry, molecular biology

  • Robert Lawrence Lab

    Research in the Robert Lawrence Lab examines how industrial agriculture, food security and human rights affect the environment.

    Research Areas: food security, agriculture, environment, human rights

    Principal Investigator

    Robert Lawrence, M.D.

    Department

    Medicine

  • Robert Shochet Lab

    The Robert Shochet Lab focuses on medical education research, including the impact of learning communities on students' perceptions of the learning environment in medical school.

    Research Areas: medical education, learning communities

    Principal Investigator

    Robert Shochet, M.D.

    Department

    Medicine

  • Sharon Kingsland Lab

    The Sharon Kingsland Lab conducts research focused on the history of modern life sciences. Our team is currently studying the history of ecology and environmental problems in the immediate post-war period, both in the United States and internationally. Our goal is to better understand physiological ecology and the relationship between ecology and agriculture. We are also investigating the design of new laboratories for environmental sciences; emerging environmental problems such as photochemical smog; and the overlap of environmental and molecular sciences.

    Research Areas: history of biology, genetics, pollution, agriculture, environment, ecology

    Principal Investigator

    Sharon Kingsland, Ph.D.

    Department

    History of Medicine

  • Shyam Sundar Biswal Lab

    xResearch in the Shyam Biswal Lab focuses on therapeutic resistance of cancer due to a gain-of-function mutation in transcription factor Nrf2. Using patient-derived xenografts in humanized immunocompetent mice and GEM models, we aim to understand the mechanisms of oncogenic cooperation and metabolic adaptation in cancer cells. We’re also investigating the systemic and pulmonary effects of air pollution as well as the health effects of recent tobacco products, such as electronic cigarettes and water pipes.

    Research Areas: Nrf2, tobacco use, genetics, cancer, pulmonary medicine, environment, lung cancer

    Principal Investigator

    Shyam Biswal, Ph.D.

    Department

    Medicine

  1. 1
  2. 2
  3. 3