Find a Research Lab

Enter a research interest, principal investigator or keyword

Displaying 1 to 20 of 24 results for engineering

Show: 10 · 20 · 50

  1. 1
  2. 2
  • Advanced Optics Lab

    The Advanced Optics Lab uses innovative optical tools, including laser-based nanotechnologies, to understand cell motility and the regulation of cell shape. We pioneered laser-based nanotechnologies, including optical tweezers, nanotracking, and laser-tracking microrheology. Applications range from physics, pharmaceutical delivery by phagocytosis (cell and tissue engineering), bacterial pathogens important in human disease and cell division.

    Other projects in the lab are related to microscopy, specifically combining fluorescence and electron microscopy to view images of the subcellular structure around proteins.

    Research Areas: optics, microscopy, physics, cellular biology, imaging, nanotechnology, drugs, tissue engineering

    Lab Website

    Principal Investigator

    Scot Kuo, Ph.D.

    Department

    Biomedical Engineering

  • Andrew Douglas Lab

    Research in the Andrew Douglas Lab investigates topics within the field of biomedical engineering. Our studies primarily focus on soft biological tissues and organs, such as the heart and tongue. Our current research areas include the nonlinear mechanics of solids, the mechanical response of compliant biological tissues, finite deformation elasticity, and the static and dynamic fracture of ductile materials.

    Research Areas: biomedicine, soft tissues, biomedical engineering, organs

    Principal Investigator

    Andrew Douglas, Ph.D.

    Department

    Biomedical Engineering

  • Andrew Lane Lab

    The Lane laboratory is focused on understanding molecular mechanisms underlying chronic rhinosinusitis and particularly the pathogenesis of nasal polyps.  Diverse techniques in molecular biology, immunology, physiology, and engineering are utilized to study epithelial cell innate immunity, olfactory loss, the sinus microbiome, and drug delivery to the nose and sinus cavities. Ongoing work explores how epithelial cells participate in the immune response and contribute to chronic sinonasal inflammation. The lab creates and employs transgenic mouse models of chronic sinusitis to support research in this area. Collaborations are in place with the School of Public Health to explore mechanisms of anti-viral immunity in influenza and rhinovirus, and with the University of Maryland to characterize the bacterial microbiome of the nose and sinuses in health and disease.

    Research Areas: nasal polyps, olfaction, cell culture, transgenic mice, chronic rhinosinusitis, innate immunity, molecular biology

  • Beer Lab

    The goal of research in the Beer Lab is to understand how gene regulatory information is encoded in genomic DNA sequence. Our work uses functional genomics DNase-seq, ChIP-seq, RNA-seq, and chromatin state data to computationally identify combinations of transcription factor binding sites that operate to define the activity of cell-type specific enhancers. We are currently focused on improving SVM methodology by including more general sequence features and constraints predicting the impact of SNPs on enhancer activity (delta-SVM) and GWAS association for specific diseases, experimentally assessing the predicted impact of regulatory element mutation in mammalian cells, systematically determining regulatory element logic from ENCODE human and mouse data, and using this sequence based regulatory code to assess common modes of regulatory element evolution and variation.

    Research Areas: computational biology, biomedical engineering, DNA, genomics, RNA

  • Cardiology Bioengineering Laboratory

    The Cardiology Bioengineering Laboratory, located in the Johns Hopkins Hospital, focuses on the applications of advanced imaging techniques for arrhythmia management. The primary limitation of current fluoroscopy-guided techniques for ablation of cardiac arrhythmia is the inability to visualize soft tissues and 3-dimensional anatomic relationships.

    Implementation of alternative advanced modalities has the potential to improve complex ablation procedures by guiding catheter placement, visualizing abnormal scar tissue, reducing procedural time devoted to mapping, and eliminating patient and operator exposure to radiation.

    Active projects include
    • Physiological differences between isolated hearts in ventricular fibrillation and pulseless electrical activity
    • Successful ablation sites in ischemic ventricular tachycardia in a porcine model and the correlation to magnetic resonance imaging (MRI)
    • MRI-guided radiofrequency ablation of canine atrial fibrillation, and ...diagnosis and intervention for arrhythmias
    • Physiological and metabolic effects of interruptions in chest compressions during cardiopulmonary resuscitation

    Henry Halperin, MD, is co-director of the Johns Hopkins Imaging Institute of Excellence and a
    professor of medicine, radiology and biomedical engineering. Menekhem M. Zviman, PhD is the laboratory manager.
    view less

    Research Areas: magnetic resonance imaging, CPR models, cardiac mechanics, MRI-guided therapy, ischemic tachycardia, arrhythmia, cardiology, sudden cardiac death, cardiopulmonary resuscitation, computational modeling

    Lab Website

    Principal Investigator

    Henry Halperin, M.D.

    Department

    Medicine

  • Clare Rock Lab

    Dr. Clare Rock is an assistant Professor of Medicine, Division of Infectious Diseases at the Johns Hopkins University School of Medicine, Associate hospital Epidemiologist at the Johns Hopkins Hospital, and Faculty Member at Armstrong Institute for Patient Safety and Quality. Her research interest focuses the prevention of pathogen transmission in the hospital environment. This includes novel strategies of improving patient room cleaning and disinfection, including human factors engineering approaches, and conducting robust clinical trials to examine effectiveness of "no touch" novel technologies such as UV-C light. She has particular interest in carbapenem-resistant Enterobacteriaceae transmission in the hospital environment, including outbreak management, and transmission and epidemiology of Clostridium difficile. Her other area of interest is diagnostic stewardship, and the behavioral, cultural and human factors aspects of implementation of initiatives to enhance appropriate use of ...diagnostic tests. She leads a national initiative, as part of the High Value Practice Academic Alliance, examining strategies for appropriate testing for Clostridium difficile. This is a wider implementation of work that Dr. Rock conducted with The Johns Hopkins Health System facilities.

    Dr. Rock has multiple sources of grant funding including from the Agency of Healthcare Research and Quality, Centers for Disease Control and Prevention, and industry. Dr. Rock is Vice Chair of the Society for Healthcare Epidemiology of America Research Network, and serves on the SHEA research committee. Dr. Rock earned her M.B.B.Ch. at the University College Dublin School of Medicine, National University of Ireland, and her MS masters of clinical science of research at the University of Maryland, where she received the MS scholar award for epidemiology.
    view more

    Research Areas: diagnostic stewardship, Clostridium difficile (C. difficile), infections, infection control, hospital epidemiology, quality of care

    Principal Investigator

    Clare Rock, M.B.B.Ch.

    Department

    Medicine

  • Daniel Kuespert Lab

    The Daniel Kuespert Lab conducts research on a range of topics within bioengineering. Past studies include exploring microscale behavior in amphiphilic fluid mixtures predicted by the SAFT equation as well as local order and microphase formation in fluids containing asymmetric molecules.

    Research Areas: bioengineering, engineering

    Principal Investigator

    Daniel Kuespert, M.S., Ph.D.

    Department

    Medicine

  • Elisseeff Lab

    The mission of the Elisseeff Lab is to engineer technologies to repair lost tissues. We aim to bridge academic research and technology discovery to treat patients and address clinically relevant challenges related to tissue engineering. To accomplish this goal we are developing and enabling materials, studying biomaterial structure-function relationships and investigating mechanisms of tissue development to practically rebuild tissues. The general approach of tissue engineering is to place cells on a biomaterial scaffold that is designed to provide the appropriate signals to promote tissue development and ultimately restore normal tissue function in vivo. Understanding mechanisms of cellular interactions (both cell-cell and cell-material) and tissue development on scaffolds is critical to advancement of the field, particularly in applications employing stem cells. Translation of technologies to tissue-specific sites and diseased environments is key to better design, understanding, and... ultimately efficacy of tissue repair strategies. We desire to translate clinically practical strategies, in the form of biomaterials/medical devices, to guide and enhance the body's natural capacity for repair. To accomplish the interdisciplinary challenge of regenerative medicine research, we maintain a synergistic balance of basic and applied/translational research. view more

    Research Areas: stem cells, biomedical engineering, tissues

    Lab Website

    Principal Investigator

    Jennifer Elisseeff, Ph.D.

    Department

    Ophthalmology

  • Grayson Lab for Craniofacial and Orthopaedic Tissue Engineering

    The Grayson Lab focuses on craniofacial and orthopaedic tissue engineering. Our research addresses the challenges associated with spatio-temporal control of stem cell fate in order to engineer complex tissue constructs. We are developing innovative methods to guide stem cell differentiation patterns and create patient-specific grafts with functional biological and mechanical characteristics. We employ engineering techniques to accurately control growth factor delivery to cells in biomaterial scaffolds as well as to design advanced bioreactors capable of maintaining cell viability in large tissue constructs. These technologies are used to enable precise control of the cellular microenvironment and uniquely address fundamental questions regarding the application of biophysical cues to regulate stem cell differentiation.

    Research Areas: stem cells, orthopaedics, biomedical engineering, biomaterials, craniofacial, tissue engineering, regenerative medicine

    Lab Website

    Principal Investigator

    Warren Grayson, Ph.D.

    Department

    Biomedical Engineering

  • Green Group

    The Green Group is the biomaterials and drug delivery laboratory in the Biomedical Engineering Department at the Johns Hopkins University School of Medicine. Our broad research interests are in cellular engineering and in nanobiotechnology. We are particularly interested in biomaterials, controlled drug delivery, stem cells, gene therapy, and immunobioengineering. We are working on the chemistry/biology/engineering interface to answer fundamental scientific questions and create innovative technologies and therapeutics that can directly benefit human health.

    Research Areas: nanobiotechnology, stem cells, biomedical engineering, drugs, immunobioengineering

    Lab Website

    Principal Investigator

    Jordan Green, Ph.D.

    Department

    Biomedical Engineering

  • Imaging for Surgery, Therapy and Radiology (I-STAR) Lab

    The Imaging for Surgery, Therapy and Radiology (I-STAR) Lab is a collaborative research endeavor based in the Department of Biomedical Engineering at Johns Hopkins University. Research areas include: (1) Imaging physics: Mathematical models of imaging performance in advanced modalities, including cone-beam CT and spectral/dual-energy imaging, (2) 3-D image reconstruction: Advanced 3-D image reconstruction based on statistical models of the imaging chain and prior information, (3) Novel imaging systems: Preclinical prototypes translated from the laboratory to first application in diagnostic and interventional procedures, and(4) Image-guided interventions and diagnostic radiology: High-precision interventional guidance systems (for surgery, interventional radiology, and radiation therapy) and new technologies for high-quality diagnostic imaging.

    Research Areas: 3-D, physics, imaging, radiology, surgery, CT

  • Inoue Lab

    Complexity in signaling networks is often derived from co-opting one set of molecules for multiple operations. Understanding how cells achieve such sophisticated processing using a finite set of molecules within a confined space--what we call the "signaling paradox"--is critical to biology and engineering as well as the emerging field of synthetic biology.

    In the Inoue Lab, we have recently developed a series of chemical-molecular tools that allow for inducible, quick-onset and specific perturbation of various signaling molecules. Using this novel technique in conjunction with fluorescence imaging, microfabricated devices, quantitative analysis and computational modeling, we are dissecting intricate signaling networks.

    In particular, we investigate positive-feedback mechanisms underlying the initiation of neutrophil chemotaxis (known as symmetry breaking), as well as spatio-temporally compartmentalized signaling of Ras and membrane lipids such as phosphoinositides. In parallel,... we also try to understand how cell morphology affects biochemical pathways inside cells. Ultimately, we will generate completely orthogonal machinery in cells to achieve existing, as well as novel, cellular functions. Our synthetic, multidisciplinary approach will elucidate the signaling paradox created by nature. view more

    Research Areas: biochemistry, cell biology, chemotaxis, cancer, signaling paradox, signaling networks, molecular biology, synthetic biology

    Lab Website

    Principal Investigator

    Takanari Inoue, Ph.D.

    Department

    Cell Biology

  • Institute for Computational Medicine

    The Institute for Computational Medicine's mission is to develop quantitative approaches for understanding the mechanisms, diagnosis and treatment of human disease through biological systems modeling, computational anatomy, and bioinformatics. Our disease focus areas include breast cancer, brain disease and heart disease.

    The institute builds on groundbreaking research at both the Johns Hopkins University Whiting School of Engineering and the School of Medicine.

    Research Areas: breast cancer, systems biology, brain, biomedical engineering, cardiology, bioinformatics, computational anatomy

  • Interventional Cardiology Research Group

    Our group is interested in a broad array of clinical and translational investigations spanning the evaluation of basic pathophysiology in patients undergoing cardiac procedures, development and evaluation of new therapeutic strategies, and improving patient selection and outcomes following interventional procedures. We are comprised of a core group of faculty and dedicated research nurses as well as fellows, residents, and students. Projects range from investigator-initiated single-center observational studies to industry-sponsored multicenter phase 3 randomized controlled trials. We have established a database of all patients who have undergone TAVR at Johns Hopkins, which is providing the basis for several retrospective analyses and will serve as the foundation for future studies of TAVR. We are also engaged in collaborative projects with other groups from the Department of Medicine and other Departments including Cardiac Surgery, Anesthesiology, Radiology, Psychiatry, and Biomedical... Engineering. Members of our group are actively involved with the Johns Hopkins Center for Bioengineering Innovation and Design (CBID) in the development of novel minimally-invasive cardiovascular devices. view less

    Research Areas: coronary CT angiography, PCI, bioprosthetic leaflet thrombosis, myocardial regeneration, TAVR

    Principal Investigator

    Jon Resar, M.D.

    Department

    Medicine

  • Kathleen Cullen Lab

    We are continually in motion. This self-motion is sensed by the vestibular system, which contributes to an impressive range of brain functions, from the most automatic reflexes to spatial perception and motor coordination. The objective of Dr. Cullen's lab's research program is to understand the mechanisms by which self-motion (vestibular) information is encoded and then integrated with signals from other modalities to ensure accurate perception and control of gaze and posture. Our studies investigate the sensorimotor transformations required for the control of movement, by tracing the coding of vestibular stimuli from peripheral afferents, to behaviorally-contingent responses in central pathways, to the readout of accurate perception and behavior. Our experimental approach is multidisciplinary and includes a combination of behavioral, neurophysiological and computational approaches in alert behaving non-human primates and mice. Funding for the laboratory has been and is provided by th...e Canadian Institutes for Health Research (CIHR), The National Institutes of Health (NIH), the National Sciences and Engineering Research Council of Canada (NSERC), FQRNT / FQRSC (Quebec). view less

    Research Areas: otolaryngology, biomedical engineering, surgery, neuroscience

  • Laboratory of Auditory Neurophysiology

    Research in the Laboratory of Auditory Neurophysiology aims to understand brain mechanism responsible for auditory perception and vocal communication in a naturalistic environment. We are interested in revealing neural mechanisms operating in the cerebral cortex and how cortical representations of biologically important sounds emerge through development and learning.

    We use a combination of state-of-the-art neurophysiological techniques and sophisticated computational and engineering tools to tackle our research questions.

    Current research in our laboratory includes the following areas (1) neural basis of auditory perception, (2) neural mechanisms for vocal communication and social interaction, and (3) cortical processing of cochlear implant stimulation.

    Research Areas: neurophysiology, neuroengineering, audiology, cochlear implant, learning, language

    Lab Website

    Principal Investigator

    Xiaoqin Wang, Ph.D.

    Department

    Biomedical Engineering

  • Quantitative Imaging Technologies

    Research in the Quantitative Imaging Technologies lab — a component of the Imaging for Surgery, Therapy and Radiology (I-STAR) Lab — focuses on novel technologies to derive accurate structural and physiological measurements from medical images. Our team works on optimization of imaging systems and algorithms to support a variety of quantitative applications, with recent focus on orthopedics and bone health. For example, we have developed an ultra-high resolution imaging chain for an orthopedic CT system to enable in-vivo measurements of bone microstructure. Our interests also include automated methods to extract quantitative information from images, including anatomical and micro-structural measurements, and shape analysis.

    Research Areas: physics, image reconstruction, orthopedic imaging, biomedical engineering, x-ray, quantitative imaging, bone health

    Principal Investigator

    Wojciech Zbijewski, M.S., Ph.D.

    Department

    Biomedical Engineering

  • Reeves Lab

    The Reeves Lab complements genetic analyses in human beings with the creation and characterization of mouse models to understand why and how gene dosage imbalance disrupts development in Down syndrome (DS). These models then provide a basis to explore therapeutic approaches to amelioration of DS features. We use chromosome engineering in embryonic stem cells (ES) to create defined dosage imbalance in order to localize the genes contributing to these anomalies and to directly test hypotheses concerning Down syndrome "critical regions" on human chromosome 21.

    Research Areas: Down syndrome, stem cells, chromosome 21, genomics

    Lab Website

    Principal Investigator

    Roger Reeves, Ph.D.

    Department

    Physiology

  • Ruth Faden Lab

    Research in the Ruth Faden Lab focuses on biomedical ethics and health policy. Our specific areas of interest include justice theory; national and global challenges in learning health care systems, health-system design and priority setting; access global investments benefits in biomedical research; and ethical challenges in biomedical science and women’s health.

    Research Areas: genetics, biomedical engineering, health care policy, women's health, bioethics

    Principal Investigator

    Ruth Faden, Ph.D.

    Department

    Medicine

  • The Nauen Lab

    Epilepsy affects 1-3% of the population and can have a profound impact on general health, employment and quality of life. Medial temporal lobe epilepsy (MTLE) develops in some patients following head injury or repeated febrile seizures. Those affected may first suffer spontaneous seizures many years after the initial insult, indicating that the neural circuit undergoes a slow pathologic remodeling over the interim. There are currently no methods of preventing the development of MTLE. It is our goal to better understand the process in order to slow, halt, and ultimately reverse it.

    Our laboratory draws on electrophysiology, molecular biology, and morphology to study the contribution of dysregulated neurogenesis and newborn neuron connectivity to the development of MTLE. We build on basic research in stem cell biology, hippocampal development, and synaptic plasticity. We work closely with colleagues in the Institute for Cell Engineering, Neurology, Neurosurgery, Biomedical Engineering..., and Radiology. As physician neuropathologists our grounding is in tissue alterations underlying human neurologic disease; using human iPSC-derived neurons and surgical specimens we focus on the pathophysiological processes as they occur in patients.

    By understanding changes in cell populations and morphologies that affect the circuit, and identifying pathologic alterations in gene expression that lead to the cell-level abnormalities, we hope to find treatment targets that can prevent the remodeling and break the feedback loop of abnormal activity > circuit change > abnormal activity.
    view more

    Research Areas: Medial temporal lobe epilepsy

    Lab Website

    Principal Investigator

    David Nauen, M.D., Ph.D.

    Department

    Pathology

  1. 1
  2. 2