Find a Research Lab

Enter a research interest, principal investigator or keyword

Displaying 11 to 14 of 14 results for electrophysiology

Show: 10 · 20 · 50

  1. 1
  2. 2
  • Stewart Hendry Laboratory

    The Stewart Hendry Laboratory uses a strategy that exploits the unique molecular characteristics of neurons to understand how these streams are organized and the types of visual signals they carry. We identify those characteristics and then use them to study distinct neuronal populations in isolation. We use anatomical approaches to study the position of these neurons in the path of visual information transfer and the circuits whereby they accomplish an analysis and synthesis of information. Collaborative studies determine by optical imaging and electrophysiological methods the physiological properties of neuronal populations previously identified by their molecular characteristics. Such a strategy exploits the robust but selective expression of neuronal genes to address questions of visual system organization, function and plasticity across the primate order, including humans.

    Research Areas: neurons, imaging, electrophysiology, vision

    Lab Website

    Principal Investigator

    Stewart Hendry, Ph.D.

    Department

    Neuroscience

  • The Arking Lab

    The Arking Lab studies the genomics of complex human disease, with the primary goal of identifying and characterizing genetics variants that modify risk for human disease. The group has pioneered the use of genome-wide association studies (GWAS), which allow for an unbiased screen of virtually all common genetic variants in the genome. The lab is currently developing improved GWAS methodology, as well as exploring the integration of additional genome level data (RNA expression, DNA methylation, protein expression) to improve the power to identify specific genetic influences of disease.

    The Arking Lab is actively involved in researching:
    • autism, a childhood neuropsychiatric disorder
    • cardiovascular genomics, with a focus on electrophysiology and sudden cardiac death (SCD)
    electrophysiology is the study of the flow of ions in biological tissues

    Dan E. Arking, PhD, is an associate professor at the McKusick-Nathans Institute of Genetic Medicine and Department of Medicine, D...ivision of Cardiology, Johns Hopkins University. view more

    Research Areas: autism, genetics, aging, cardiovascular diseases, sudden cardiac death

    Principal Investigator

    Dan Arking, Ph.D.

    Department

    Medicine

  • The Nauen Lab

    Epilepsy affects 1-3% of the population and can have a profound impact on general health, employment and quality of life. Medial temporal lobe epilepsy (MTLE) develops in some patients following head injury or repeated febrile seizures. Those affected may first suffer spontaneous seizures many years after the initial insult, indicating that the neural circuit undergoes a slow pathologic remodeling over the interim. There are currently no methods of preventing the development of MTLE. It is our goal to better understand the process in order to slow, halt, and ultimately reverse it.

    Our laboratory draws on electrophysiology, molecular biology, and morphology to study the contribution of dysregulated neurogenesis and newborn neuron connectivity to the development of MTLE. We build on basic research in stem cell biology, hippocampal development, and synaptic plasticity. We work closely with colleagues in the Institute for Cell Engineering, Neurology, Neurosurgery, Biomedical Engineering..., and Radiology. As physician neuropathologists our grounding is in tissue alterations underlying human neurologic disease; using human iPSC-derived neurons and surgical specimens we focus on the pathophysiological processes as they occur in patients.

    By understanding changes in cell populations and morphologies that affect the circuit, and identifying pathologic alterations in gene expression that lead to the cell-level abnormalities, we hope to find treatment targets that can prevent the remodeling and break the feedback loop of abnormal activity > circuit change > abnormal activity.
    view more

    Research Areas: Medial temporal lobe epilepsy

    Lab Website

    Principal Investigator

    David Nauen, M.D., Ph.D.

    Department

    Pathology

  • Zhaozhu Qiu Laboratory

    Ion channels are pore-forming membrane proteins gating the flow of ions across the cell membrane. Among their many functions, ion channels regulate cell volume, control epithelial fluid secretion, and generate the electrical impulses in our brain. The Qiu Lab employs a multi-disciplinary approach including high-throughput functional genomics, electrophysiology, biochemistry, and mouse genetics to discover novel ion channels and to elucidate their role in health and disease.

    Research Areas: ion channel, neurological disease, electrophysiology, functional genomics, sensory neuroscience

    Lab Website

    Principal Investigator

    Zhaozhu Qiu, Ph.D.

    Department

    Neuroscience
    Physiology

  1. 1
  2. 2