Find a Research Lab

Enter a research interest, principal investigator or keyword

Displaying 1 to 10 of 15 results for electrophysiology

Show: 10 · 20 · 50

  1. 1
  2. 2
  • Ashikaga Lab

    We specialize in unconventional, multi-disciplinary approaches to studying the heart at the intersection of applied mathematics, physics and computer science. We focus on theory development that leads to new technology and value delivery to the society. Currently we have three research programs:

    1. Precision Medicine
    To develop a quantitative approach to personalized risk assessment for stroke and dementia based on patent-specific heart anatomy, function and blood flow.
    Disciplines: Cardiac Hemodynamics; Medical Imaging Physics; Continuum Mechanics; Computational Fluid Dynamics

    2. Information Theory
    To quantify and perturb cardiac fibrillation that emerges as a macro-scale behavior of the heart from micro-scale behaviors of inter-dependent components.
    Disciplines: Cardiac Electrophysiology; Spiral Wave; Information Theory; Complex Networks

    3. Artificial Intelligence
    To develop artificial intelligence algorithms to predict the future risk of heart attack, stroke and sudden... death, and to assist surgical interventions to prevent these outcomes.
    Disciplines: Medical Imaging Physics; Artificial Intelligence; Robotically Assisted Interventions
    view more

    Research Areas: complex systems, Computational Fluid Dynamics, spiral wave, artificial intelligence, informational theory

  • Bradley Undem Lab

    Research in the Bradley Undem Lab centers around the hypothesis that the peripheral nervous system is directly involved in the processes of inflammation. This hypothesis is being studied primarily in the central airways and sympathetic ganglia. We are addressing this in a multidisciplinary fashion, using pharmacological, electrophysiological, biochemical and anatomical methodologies.

    Research Areas: biochemistry, electrophysiology, inflammation, pharmacology, nervous system

    Principal Investigator

    Bradley Undem, Ph.D.

    Department

    Medicine

  • Brady Maher Laboratory

    The Brady Maher Laboratory is interested in understanding the cellular and circuit pathophysiology that underlies neurodevelopmental and psychiatric disorders. Our lab focuses on trying to understand the function of genes that are associated with neurodevelopment problems by manipulating their expression level in utero during the peak of cortical development. We then use a variety of approaches and technologies to identify resulting phenotypes and molecular mechanisms including cell and molecular biology, optogenetics, imaging and electrophysiology.

    Current projects in the lab are focused on understanding the function of transcription factor 4 (TCF4), a clinically pleiotropic gene. Genome-wide association studies have identified genetic variants of TCF4 that are associated with schizophrenia, while autosomal dominant mutations in TCF4 result in Pitt Hopkins syndrome. Using our model system, we have identified several interesting electrophysiological and cell biological phenotypes as...sociated with altering the expression of TCF4 in utero. We hypothesize that these phenotypes represent cellular pathophysiology related to these disorders and by understanding the molecular mechanisms responsible for these phenotypes we expect to identify therapeutic targets for drug development.
    view more

    Research Areas: cell biology, neurodevelopment, imaging, schizophrenia, psychiatric disorders, Pitt Hopkins syndrome, elecrophysiology, genomics, drugs, optogenetics, molecular biology, phenotypes

  • Brown Lab

    The Brown Lab is focused on the function of the cerebral cortex in the brain, which underlies our ability to interact with our environment through sensory perception and voluntary movement. Our research takes a bottom-up approach to understanding how the circuits of this massively interconnected network of neurons are functionally organized, and how dysfunction in these circuits contributes to neurodegenerative diseases like amyotrophic lateral sclerosis and neuropsychiatric disorders, including autism and schizophrenia. By combining electrophysiological and optogenetic approaches with anatomical and genetic techniques for identifying cell populations and pathways, the Brown Lab is defining the synaptic interactions among different classes of cortical neurons and determining how long-range and local inputs are integrated within cortical circuits. In amyotrophic lateral sclerosis, corticospinal and spinal motor neurons progressively degenerate. The Brown Lab is examining how abnormal ...activity within cortical circuits contributes to the selective degeneration of corticospinal motor neurons in an effort to identify new mechanisms for treating this disease. Abnormalities in the organization of cortical circuits and synapses have been identified in genetic and anatomical studies of neuropsychiatric disease. We are interested in the impact these abnormalities have on cortical processing and their contribution to the disordered cognition typical of autism and schizophrenia. view more

    Research Areas: autism, neurodegenerative diseases, brain, electrophysiology, ALS, schizophrenia, cerebral cortex, optogenetics

    Lab Website

    Principal Investigator

    Solange Brown, M.D., Ph.D.

    Department

    Neuroscience

  • Clinical and Computational Auditory neuroscience

    Our laboratory investigates the neural bases of sound processing in the human brain. We combine electrophysiology recordings (intracranial, scalp), behavioral paradigms, and statistical modeling methods to study the cortical dynamics of normal and impaired auditory perception. We are interested in measuring and modeling variability in spatiotemporal cortical response patterns as a function of individual listening abilities and acoustic sound properties. Current studies are investigating the role of high-frequency (>30 Hz) neural oscillations in human auditory perception.

    Research Areas: vestibular disorders

    Lab Website

    Principal Investigator

    Dana Boatman, Ph.D.

    Department

    Neurology

  • Dong Laboratory

    The Dong Laboratory has identified many genes specifically expressed in primary sensory neurons in dorsal root ganglia (DRG). Our lab uses multiple approaches, including molecular biology, mouse genetics, mouse behavior and electrophysiology, to study the function of these genes in pain and itch sensation. Other research in the lab examines the molecular mechanism of how skin mast cells sensitize sensory nerves under inflammatory states.

    Research Areas: skin cells, electrophysiology, genetics, itch, neuroscience, pain, molecular biology

    Lab Website

    Principal Investigator

    Xinzhong Dong, Ph.D.

    Department

    Neuroscience

  • Frank Bosmans Lab

    Research in the Bosmans Lab seeks to address fundamental questions regarding the identities of the components of the voltage-activated sodium (Nav) channel signaling complex and to resolve their mechanisms of action at the molecular level. Our research combines several techniques including molecular biology, electrophysiology, genetics and biochemistry. Successful completion of these goals will reveal key elements in the Nav channel signaling complex, help define Nav channel function in normal and pathological states, and may offer novel strategies for developing therapeutic drugs.

    Research Areas: biochemistry, electrical signaling, electrophysiology, sodium channels, Nav channels, genomics, drugs, molecular biology

    Principal Investigator

    Frank Bosmans, M.S., Pharm.D.

    Department

    Physiology

  • Fuchs Laboratory

    The Fuchs Laboratory uses cellular electrophysiology, immunolabeling and electron microscopy to study synaptic connections between sensory hair cells and neurons in the cochlea. One effort focuses on an unusual cholinergic receptor that mediates efferent inhibition of hair cells, driving discovery of the molecular mechanisms, and offering a target for protection against acoustic trauma. A second topic concerns the small number of unmyelinated "type II" afferent neurons whose synaptic connectivity and response properties argue for a role as the pathway for noxious (too loud) sound. Our studies are motivated by curiosity about fundamental mechanisms, and to provide a foundation for understanding cochlear pathogenesis.

    Research Areas: synaptic connections, immunolabeling, neurons, elecrophysiology, audiology, cellular electrophysiology, hearing loss, electron microscopy, cochlea, cochlear pathogensesis

  • Neuroengineering and Biomedical Instrumentation Lab

    The mission and interest of the neuroengineering and Biomedical Instrumentation Lab is to develop novel instrumentation and technologies to study the brain at several levels--from single cell to the whole brain--with the goal of translating the work into practical research and clinical applications.

    Our personnel include diverse, independent-minded and entrepreneurial students, post docs, and research faculty who base their research on modern microfabrication, stem cell biology, electrophysiology, signal processing, image processing, and integrated circuit design technologies.

    Research Areas: stem cells, imaging, brain, electrophysiology, neuroengineering, biomedical engineering, neuroscience

    Lab Website

    Principal Investigator

    Nitish Thakor, Ph.D.

    Department

    Biomedical Engineering

  • O'Connor Lab

    How do brain dynamics give rise to our sensory experience of the world? The O'Connor lab works to answer this question by taking advantage of the fact that key architectural features of the mammalian brain are similar across species. This allows us to leverage the power of mouse genetics to monitor and manipulate genetically and functionally defined brain circuits during perception. We train mice to perform simple perceptual tasks. By using quantitative behavior, optogenetic and chemical-genetic gain- and loss-of-function perturbations, in vivo two-photon imaging, and electrophysiology, we assemble a description of the relationship between neural circuit function and perception. We work in the mouse tactile system to capitalize on an accessible mammalian circuit with a precise mapping between the sensory periphery and multiple brain areas. Our mission is to reveal the neural circuit foundations of sensory perception; to provide a framework to understand how circuit dysfunction causes ...mental and behavioral aspects of neuropsychiatric illness; and to help others fulfill creative potential and contribute to human knowledge. view more

    Research Areas: brain, mental illness, neuroscience, perception

    Lab Website

    Principal Investigator

    Daniel O'Connor, M.A., Ph.D.

    Department

    Neuroscience

  1. 1
  2. 2