Find a Research Lab

Enter a research interest, principal investigator or keyword

Displaying 11 to 20 of 36 results for drugs

Show: 10 · 20 · 50

  1. 1
  2. 2
  3. 3
  4. 4
  • Eric Nuermberger Lab

    Research in the Eric Nuermberger Lab focuses primarily on experimental chemotherapy for tuberculosis. We use proven murine models of active and latent tuberculosis infection to assess the effectiveness of novel antimicrobials. A key goal is to identify new agents to combine with existing drugs to shorten tuberculosis therapy or enable less frequent drug administration. We're also using a flow-controlled in vitro pharmacodynamic system to better understand the pharmacodynamics of drug efficacy and the selection of drug-resistant mutants during exposure to current agents.

    Research Areas: pharmacodynamics, chemotherapy, infectious disease, antimicrobials, drugs, antibiotics, Streptococcus pneumoniae, pneumonia, tuberculosis

    Principal Investigator

    Eric Nuermberger, M.D.

    Department

    Medicine

  • Ernesto Freire Laboratory

    The Ernesto Freire Lab studies the use of novel drugs to treat disease. Our research has resulted in the development of a thermodynamic platform for drug discovery and optimization. Our aim is to achieve high binding affinity and selectivity as well as appropriate pharmacokinetics with the platform. We are currently focusing on drug targets such as HIV/-1 protease inhibitors (HIV/AIDS), plasmepsin inhibitors (malaria), HCV protease inhibitors (hepatitis C), coronavirus 3CL-pro protease inhibitors (SARS and other viral infections), HIV-1 gp120 inhibitors (HIV/AIDS), chymase inhibitors (cardiovascular disease) and beta lactamase inhibitors (antibiotic resistance).

    Research Areas: pharmaceuticals, thermodynamics, AIDS, drug discovery, HIV, protease inhibitors, malaria

  • Frueh Laboratory

    The Frueh Laboratory uses nuclear magnetic resonance (NMR) to study how protein dynamics can be modulated and how active enzymatic systems can be conformed. Non-ribosomal peptide synthetases (NRPS) are large enzymatic systems that biosynthesize secondary metabolites, many of which are used by pharmaceutical scientists to produce drugs such as antibiotics or anticancer agents. Dr. Frueh's laboratory uses NMR to study inter- and intra-domain modifications that occur during the catalytic steps of NRPS. Dr. Frueh and his team are constantly developing new NMR techniques to study these complicated enzymatic systems.

    Research Areas: enzymes, proteomics, imaging, drugs, antibiotics, nuclear magnetic resonance, molecular biology

  • Gabsang Lee Lab

    Human induced pluripotent stem cells (hiPSCs) provide unprecedented opportunities for cell replacement approaches, disease modeling and drug discovery in a patient-specific manner. The Gabsang Lee Lab focuses on the neural crest lineage and skeletal muscle tissue, in terms of their fate-determination processes as well as relevant genetic disorders.

    Previously, we studied a human genetic disorder (familial dysautonomia, or FD) with hiPSCs and found that FD-specific neural crest cells have low levels of genes needed to make autonomous neurons--the ones needed for the "fight-or-flight" response. In an effort to discover novel drugs, we performed high-throughput screening with a compound library using FD patient-derived neural crest cells.

    We recently established a direct conversion methodology, turning patient fibroblasts into "induced neural crest (iNC)" that also exhibit disease-related phenotypes, just as the FD-hiPSC-derived neural crest. We're extending our research to the ne...ural crest's neighboring cells, somite. Using multiple genetic reporter systems, we identified sufficient cues for directing hiPSCs into somite stage, followed by skeletal muscle lineages. This novel approach can straightforwardly apply to muscular dystrophies, resulting in expandable myoblasts in a patient-specific manner.
    view more

    Research Areas: stem cells, human-induced pluripotent stem cells, genomics, drugs, muscular dystrophy, familial dysautonomia

    Principal Investigator

    Gabsang Lee, Ph.D.

    Department

    Neurology

  • Green Group

    The Green Group is the biomaterials and drug delivery laboratory in the Biomedical Engineering Department at the Johns Hopkins University School of Medicine. Our broad research interests are in cellular engineering and in nanobiotechnology. We are particularly interested in biomaterials, controlled drug delivery, stem cells, gene therapy, and immunobioengineering. We are working on the chemistry/biology/engineering interface to answer fundamental scientific questions and create innovative technologies and therapeutics that can directly benefit human health.

    Research Areas: nanobiotechnology, stem cells, biomedical engineering, drugs, immunobioengineering

    Lab Website

    Principal Investigator

    Jordan Green, Ph.D.

    Department

    Biomedical Engineering

  • Gregory Kirk Lab

    Research in the Gregory Kirk Lab examines the natural history of viral infections — particularly HIV and hepatitis viruses — in the U.S. and globally. As part of the ALIVE (AIDS Linked to the Intravenous Experience) study, our research looks at a range of pathogenetic, clinical behavioral issues, with a special focus on non-AIDS-related outcomes of HIV, including cancer and liver and lung diseases. We use imaging and clinical, genetic, epigenetic and proteomic methods to identify and learn more about people at greatest risk for clinically relevant outcomes from HIV, hepatitis B and hepatitis C infections. Our long-term goal is to translate our findings into targeted interventions that help reduce the disease burden of these infections.

    Research Areas: global health, Hepatitis, Africa, AIDS, cancer, HIV, drugs, liver diseases

    Principal Investigator

    Gregory Kirk, M.D., M.P.H., Ph.D.

    Department

    Medicine

  • Herschel Wade Lab

    The emergence of structural genomics, proteomics and the large-scale sequencing of many genomes provides experimental access to regions of protein sequence-structure-function landscapes which have not been explored through traditional biochemical methods. Protein structure-function relationships can now be examined rigorously through the characterization of protein ensembles, which display structurally convergent--divergent solutions to analogous or very similar functional properties.

    In this modern biochemical context, the Herschel Wade Lab will use protein libraries, chemistry, biophysics, molecular biology and structural methods to examine the basis of molecular recognition in the context of several important biological problems, including structural and mechanistic aspects of multi-drug resistance, ligand-dependent molecular switches and metal ion homeostasis.

    Research Areas: biophysics, biochemistry, proteomics, genomics, drugs, molecular biology

  • James Barrow Laboratory

    The James Barrow Laboratory studies drug discovery at the Lieber Institute. He leads research related to medicinal chemistry, biology, and drug metabolism, with the goal of validating novel mechanisms and advancing treatments for disorders of brain development.

    Research Areas: brain development, drugs, chemistry, biology

  • Jay Baraban Laboratory

    The Jay Baraban Laboratory studies key aspects of neuronal plasticity induced by environmental stimuli, including drugs. The ability of the microRNA system to regulate protein translation in the vicinity of synapses indicates it is well positioned to play a central role in regulating synaptic plasticity. Accordingly, we are studying how this system regulates synaptic function. In particular, we have identified the translin/trax RNAse complex as a key regulator of microRNA processing and are using genetically engineered mice that lack this complex to understand its role in neuronal function. For example, these mice display defects in responsiveness to cocaine and in certain forms of synaptic plasticity. We use a combination of behavioral and molecular approaches to conduct studies aimed at understanding how the microRNA system regulates these processes.

    Research Areas: synaptic plasticity, neuronal plasticity, drugs, RNA

    Principal Investigator

    Jay Baraban, M.D., Ph.D.

    Department

    Neuroscience

  • Jodi Segal Lab

    Research in the Jodi Segal Lab focuses on developing methodologies to use observational data to understand the use of new drugs, particularly drugs for treating diabetes, blood disorders and osteoporosis. We apply advanced methods for evidence-based review and meta-analysis, and—in collaboration with Johns Hopkins biostatisticians—we have developed new methodologies for observational research (using propensity scores to adjust for covariates that change over time) and methods to account for competing risks and heterogeneity of treatment effects in analyses.

    Research Areas: blood disorders, osteoporosis, diabetes, drugs, evidence-based medicine

    Principal Investigator

    Jodi Segal, M.D., M.P.H.

    Department

    Medicine

  1. 1
  2. 2
  3. 3
  4. 4