Skip Navigation

COVID-19: We are vaccinating patients ages 12+. Learn more:

Vaccines, Boosters & Additional Doses | Testing | Patient Care | Visitor Guidelines | Coronavirus | Self-Checker | Email Alerts

 

Philips Respironics issued a recall for some CPAP and BiLevel PAP devices and mechanical ventilators. Learn more.

Find a Research Lab

Research Lab Results for drug discovery

Displaying 1 to 6 of 6 results
Results per page:
  • Drug Discovery Group

    Lab Website
    Principal Investigator:
    Barbara Slusher, M.A.S., Ph.D.
    Oncology

    Barbara Slusher, M.A.S., Ph.D., leads a 20-member veteran drug discovery team of medicinal chemists, assay developers, pharmacologists, toxicologists and pharmacokinetic/drug metabolism experts, who identify novel drug targets arising from JHU faculty’s research and translate them into new, small molecule drug therapies.

    Her team collaborates extensively with faculty at the Bloomberg~Kimmel Institute for Cancer Immunotherapy and leads the BKI immunotherapy drug discovery core, aimed at developing new immune-targeting drug therapies for laboratory and clinical testing at Johns Hopkins.

    Research Areas: glutamine antagonist, drug discovery, cancer, immunotherapy, cancer metabolism
  • Ernesto Freire Laboratory

    Principal Investigator:
    Ernesto Freire, Ph.D.
    Biophysics and Biophysical Chemistry

    The Ernesto Freire Lab studies the use of novel drugs to treat disease. Our research has resulted in the development of a thermodynamic platform for drug discovery and optimization. Our aim is to achieve high binding affinity and selectivity as well as appropriate pharmacokinetics with the platform. We are currently focusing on drug targets such as HIV/-1 protease inhibitors (HIV/AIDS), plasmepsin inhibitors (malaria), HCV protease inhibitors (hepatitis C), coronavirus 3CL-pro protease inhibitors (SARS and other viral infections), HIV-1 gp120 inhibitors (HIV/AIDS), chymase inhibitors (cardiovascular disease) and beta lactamase inhibitors (antibiotic resistance).

    Research Areas: pharmaceuticals, thermodynamics, AIDS, drug discovery, HIV, protease inhibitors, malaria
  • Gabelli Lab

    Lab Website
    Principal Investigator:
    Sandra Gabelli, Ph.D.
    Medicine

    The Gabelli lab research is focused on structural, mechanistic and functional aspects of enzyme activation that play a role in the biology of human diseases such as cancer, parasitic infection and cardiovascular disease. Their work seeks to:

    1. Understand how molecular events at the recognition level coordinate and trigger events in the cells
    2. Translate structural and mechanistic information on protein:protein interactions at the cytoplasmic level into preventive and therapeutic treatment for human disease.

    To achieve a comprehensive understanding, they are studying cytoplasmic protein-protein interactions involved in regulation of pathways such as PI3K and Sodium Voltage gated channels. Their research integrates structural biology and chemical biology and it is focused on drug discovery for targeted therapies.

    Research Areas: biochemistry, chemical biology, cell biology, structural biology, proteomics, cancer, diarrhea, diabetes, drugs, cellular signaling, inflammation, pharmacology
  • Gabsang Lee Lab

    Principal Investigator:
    Gabsang Lee, Ph.D.
    Neurology

    Human induced pluripotent stem cells (hiPSCs) provide unprecedented opportunities for cell replacement approaches, disease modeling and drug discovery in a patient-specific manner. The Gabsang Lee Lab focuses on the neural crest lineage and skeletal muscle tissue, in terms of their fate-determination processes as well as relevant genetic disorders.

    Previously, we studied a human genetic disorder (familial dysautonomia, or FD) with hiPSCs and found that FD-specific neural crest cells have low levels of genes needed to make autonomous neurons--the ones needed for the "fight-or-flight" response. In an effort to discover novel drugs, we performed high-throughput screening with a compound library using FD patient-derived neural crest cells.

    We recently established a direct conversion methodology, turning patient fibroblasts into "induced neural crest (iNC)" that also exhibit disease-related phenotypes, just as the FD-hiPSC-derived neural crest. We're extending our research to the ne...ural crest's neighboring cells, somite. Using multiple genetic reporter systems, we identified sufficient cues for directing hiPSCs into somite stage, followed by skeletal muscle lineages. This novel approach can straightforwardly apply to muscular dystrophies, resulting in expandable myoblasts in a patient-specific manner.
    view more

    Research Areas: stem cells, human-induced pluripotent stem cells, genomics, drugs, muscular dystrophy, familial dysautonomia
  • JHU NIMH Research Center

    Lab Website

    The Johns Hopkins NIMH Center is comprised of an interdisciplinary research team who has pooled their talents to study the nature of HIV-associated neurocognitive disorders (HAND). Their aim is to translate discoveries of the pathophysiological mechanisms into novel therapeutics for HAND.Our objectives are to integrate aspects of ongoing research in HAND and SIV encephalitis; to develop high-throughput and screening assays for identifying novel therapeutic compounds; to use proteomics and lipidomics approaches to indentifying surrogate markers of disease activity; to disseminate information and education about HAND through existing and new educational systems, including the JHU AIDS Education Training Center and the JHU Center for Global Clinical Education and to facilitate the entry of new investigators into neuro-AIDS research, and to catalyze new areas of research, particularly where relevant for drug discovery or the development of validated surrogate markers.

    Research Areas: neuropathy, HAND, AIDS dementia complex, myopathy, myelopathy, HIV-associated neurocognitive disorders
  • John T. Isaacs Laboratory

    Lab Website
    Principal Investigator:
    John Isaacs, Ph.D.
    Oncology

    While there has been an explosion of knowledge about human carcinogenesis over the last 2 decades, unfortunately, this has not translated into the development of effective therapies for either preventing or treating the common human cancers. The goal of the Isaacs’ lab is to change this situation by translating theory into therapy for solid malignancies, particularly Prostate cancer. Presently, a series of drugs discovered in the Isaacs’ lab are undergoing clinical trials in patients with metastatic cancer.

    The ongoing drug discovery in the lab continues to focus upon developing agents to eliminate the cancer initiating stem cells within metastatic sites of cancer. To do this, a variety of bacterial and natural product toxins are being chemically modified to produce “prodrugs” whose cytotoxicity is selectively activated by proteases produced in high levels only by cancer cells or tumor associated blood vessel cells. In this way, these prodrugs can be given systemically to metastati...c patients without un-acceptable toxicity to the host while being selectively activated to potent killing molecules within metastatic sites of cancer.

    Such a “Trojan Horse” approach is also being developed using allogeneic bone marrow derived Mesenchymal Stem cells which are genetically engineered to secrete “prodrugs” so that when they are infused into the patient, they selectively “home” to sites of cancers where the appropriate enzymatic activity is present to liberate the killing toxin sterilizing the cancer “neighborhood”.
    view more

    Research Areas: anti-cancer drugs, stem cell biology
  1. 1
Create lab profile
Edit lab profile
back to top button