Find a Research Lab

Enter a research interest, principal investigator or keyword

Displaying 1 to 33 of 33 results for diabetes

Show: 10 · 20 · 50

  1. 1
  • Adrian Dobs Lab

    Researchers in the Adrian Dobs Lab study topics that include gonadal dysfunction, hyperlipidemia, diabetes mellitus, and the relationship between sex hormones and heart disease. We currently are investigating male gonadal function—with particular interest in new forms of male hormone replacement therapy—and hormonal changes related to aging.

    Research Areas: diabetes mellitus, hormones, hyperlipidemia, male gonadal function, cardiovascular diseases, endocrinology

    Principal Investigator

    Adrian Dobs, M.D., M.H.S.

    Department

    Medicine

  • Aniket Sidhaye Lab

    Investigators in the Aniket Sidhaye Lab focus on the mechanism of nuclear hormone receptor action—with an emphasis on thyroid hormone receptors and PPAR-gamma obesity—and transitional care of patients with type 1 diabetes.

    Research Areas: biochemistry, obesity, hormones, diabetes, transitional care, endocrinology, thyroid

    Lab Website

    Principal Investigator

    Aniket Sidhaye, M.D.

    Department

    Medicine

  • Edgar Miller Lab

    Research in the Edgar Miller Lab focuses on nutrition, hypertension and kidney disease. Current projects include a National Heart, Lung, and Blood Institute study on dietary carbohydrate and glycemic index effects on markers of oxidative stress, inflammation and kidney function; and a National Institute of Diabetes and Digestive and Kidney Diseases randomized controlled trial that examines the effects of omega-3 fatty acid supplementation on urine protein excretion in diabetic kidney disease.

    Research Areas: nutrition, kidney diseases, diabetes, inflammation

    Principal Investigator

    Edgar Miller, M.D., Ph.D.

    Department

    Medicine

  • Elizabeth Selvin Lab

    The Elizabeth Selvin Lab examines the intersection of epidemiology, clinical policy and public health policy. One of our key goals is to use the findings of epidemiologic research to inform the screening, diagnosis and treatment of diabetes, cardiovascular disease and kidney disease. Much of our work looks at biomarkers and diagnostics related to diabetes and diabetes complications. Our findings — linking hemoglobin A1c (HbA1c) to diabetic complications and identifying the role of A1c in diabetes diagnosis — have influenced clinical practice guidelines.

    Research Areas: epidemiology, biomarkers, kidney diseases, obesity, diabetes, health care policy, cardiovascular diseases

    Principal Investigator

    Elizabeth Selvin, M.P.H., Ph.D.

    Department

    Medicine

  • Felicia Hill-Briggs Lab

    Research in the Felicia Hill-Briggs Lab focuses on assessment methods and clinical intervention in behavioral medicine, with an emphasis on patient self-management and outcomes in ethnic minorities with chronic diseases. We are interested in the application of problem-solving and decision-making models to self-management and health behavior change. Our recent research involves examining problem-solving training for cardiovascular disease risk self-management in African Americans with type 2 diabetes. We also have a long-standing interest in cognitive/neuropsychological processes in chronic diseases, translation of research to clinical practice settings and community-based settings, and evidence-based behavioral medicine.

    Research Areas: neuropsychology, psychology, African Americans, diabetes, self-management, behavioral medicine, evidence-based medicine

    Principal Investigator

    Felicia Hill-Briggs, Ph.D.

    Department

    Medicine

  • Fu Lab

    The Fu Lab is a basic research lab that studies zinc transport, with a particular focus on which step in the zinc transport process may be modulated and how. Dr. Fu's lab uses parallel cell biology and proteomic approaches to understand how these physiochemical principles are applied to mammalian zinc transporters and integrated to the physiology of pancreatic beta cells. This research has implications for understanding how zinc transport is related to diabetes and insulin intake.

    Research Areas: cell biology, proteomics, zinc, pancreatic cells, diabetes

    Lab Website

    Principal Investigator

    Dax Fu, Ph.D.

    Department

    Physiology

  • Guang William Wong Lab

    The Wong Lab seeks to understand mechanisms employed by cells and tissues to maintain metabolic homeostasis. We are currently addressing how adipose- and skeletal muscle-derived hormones (adipokines and myokines), discovered in our lab, regulate tissue crosstalk and signaling pathways to control energy metabolism. We use transgenic and knockout mouse models, as well as cell culture systems, to address the role of the CTRP family of hormones in physiological and disease states. We also aim to identify the receptors that mediate the biological functions of CTRPs.

    Research Areas: energy metabolism, insulin resistance, hormones, diabetes, metabolic homeostasis

    Principal Investigator

    Guang Wong, Ph.D.

    Department

    Physiology

  • Hsin-Chieh Yeh Lab

    Work in the Hsin-Chieh Yeh Lab focuses on clinical trials and cohort studies of diabetes, obesity and behavioral intervention, cancer and hypertension. Recent investigations have focused on novel risk factors and complications related to obesity and type 2 diabetes, particularly lung function, smoking and cancer. We recently co-led a randomized clinical trial of tailored dietary advice for consumption of dietary supplements to lower blood pressure and improve cardiovascular disease risk factors in hypertensive urban African Americans.

    Research Areas: epidemiology, African Americans, cancer, obesity, hypertension, diabetes, behavioral medicine

    Lab Website

    Principal Investigator

    Hsin-Chieh Yeh, Ph.D.

    Department

    Medicine

  • J. Hunter Young Lab

    Research in the J. Hunter Young Lab focuses on the genetic epidemiology and physiology of cardiovascular disease and its risk factors, especially hypertension, diabetes and obesity. Current activities include an observational study of hypertension among African Americans; a genetic epidemiology study of worldwide cardiovascular disease susceptibility patterns; and several population-based observational studies of cardiovascular and renal disease. A recent focus group study found that changes in housing and city policies might lead to improved environmental health conditions for public housing residents.

    Research Areas: epidemiology, kidney diseases, obesity, hypertension, diabetes, genomics, physiology, cardiovascular diseases

    Principal Investigator

    Jeffery Young, M.D., M.H.S.

    Department

    Medicine

  • Jeanne Clark Lab: GIM Research

    Research in the Jeanne Clark Lab covers a wide range of fields, employing various research techniques, methods and procedures to generate and disseminate the knowledge required to prevent disease and its consequences. Our most recent research program, Look AHEAD, focuses on the health of overweight volunteers with type 2 diabetes. We are examining the long-term effects of an intensive lifestyle intervention program designed to achieve and maintain weight loss by decreased caloric intake and increased physical activity.

    Research Areas: epidemiology, obesity, diabetes, liver diseases

    Lab Website

    Principal Investigator

    Jeanne Clark, M.D., M.P.H.

    Department

    Medicine

  • Jodi Segal Lab

    Research in the Jodi Segal Lab focuses on developing methodologies to use observational data to understand the use of new drugs, particularly drugs for treating diabetes, blood disorders and osteoporosis. We apply advanced methods for evidence-based review and meta-analysis, and—in collaboration with Johns Hopkins biostatisticians—we have developed new methodologies for observational research (using propensity scores to adjust for covariates that change over time) and methods to account for competing risks and heterogeneity of treatment effects in analyses.

    Research Areas: blood disorders, osteoporosis, diabetes, drugs, evidence-based medicine

    Principal Investigator

    Jodi Segal, M.D., M.P.H.

    Department

    Medicine

  • Katherine Wilson Lab

    Research in the Wilson Lab focuses on three components of nuclear lamina structure: lamins, LEM-domain proteins (emerin), and BAF.

    These three proteins all bind each other directly, and are collectively required to organize and regulate chromatin, efficiently segregate chromosomes and rebuild nuclear structure after mitosis. Mutations in one or more of these proteins cause a variety of diseases including Emery-Dreifuss muscular dystrophy (EDMD), cardiomyopathy, lipodystrophy and diabetes, and accelerated aging.

    We are examining emerin's role in mechanotransduction, how emerin and lamin A are regulated, and whether misregulation contributes to disease.

    Research Areas: cell biology, Emery-Dreifuss muscular dystrophy (EDMD), accelerated aging, chromatin, diabetes, genomics, emerin, nuclear lamina, lipodystrophy, cardiomyopathy

    Principal Investigator

    Katherine Wilson, Ph.D.

    Department

    Cell Biology

  • Kendall Moseley Lab

    Research in the Kendall Moseley Lab is focused on the interplay between type 2 diabetes, aging and osteoporosis. We also study the function of bone stem cells in the regulation of bone remodeling.

    Research Areas: type 2 diabetes, osteoporosis, stem cells, aging

    Principal Investigator

    Kendall Moseley, M.D.

    Department

    Medicine

  • Lee Bone Lab

    Research in the Lee Bone Lab uses community-based participatory approaches to promote health in underserved urban African-American populations. We conduct randomized clinical trials on cardiovascular disease, diabetes and cancer detection and control in order to test the success of community interventions. We focus in particular on making interventions sustainable and on implementing electronic education to improve communication.

    Research Areas: African Americans, cancer, diabetes, community outreach, cardiovascular diseases, community health education

    Principal Investigator

    Lee Bone, M.P.H.

    Department

    Medicine

  • Mariana Lazo Lab

    The Mariana Lazo Lab studies the epidemiology of nonalcoholic fatty liver disease, diabetes and obesity in adults. We also study the effects of moderate alcohol consumption on liver and cardiovascular diseases.

    Research Areas: fatty liver disease, epidemiology, alcohol, alcohol use, obesity, nonalcoholic fatty liver disease, diabetes, cardiovascular diseases, liver diseases

    Lab Website

    Principal Investigator

    Mariana Lazo, M.D., Ph.D., Sc.M.

    Department

    Medicine

  • Mark Sulkowski Lab

    Research in the Mark Sulkowski Lab focuses on hepatitis B and hepatitis C. We've conducted clinical research related to the management of viral hepatitis, including novel agents. Other studies focus on adult patients at the Johns Hopkins site of the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) Hepatitis B Clinical Research Network as well as the National Institute of Allergy and Infectious Diseases Adult AIDS Clinical Trials Group.

    Research Areas: infectious disease, hepatitis B, hepatitis C

    Lab Website

    Principal Investigator

    Mark Sulkowski, M.D.

    Department

    Medicine

  • Michael Klag Lab

    The Michael Klag Lab focuses on the epidemiology and prevention of kidney disease, cardiovascular disease and hypertension. Our research determined that the U.S. was experiencing an epidemic of end-stage kidney disease, pinpointed the incidence of kidney disease and published scholarship on risk factors for kidney disease such as race, diabetes and socioeconomic status. Our Precursors Study has shown that serum cholesterol measured at age 22 years is a predictor for midlife cardiovascular disease, a finding that has influenced policy about cholesterol screening in young adults. We also research health behaviors that lead to hypertension and study how differences in these behaviors affect urban and non-urban populations.

    Research Areas: longitudinal data, kidney diseases, health behaviors, hypertension, cardiovascular diseases, cholesterol

    Principal Investigator

    Michael Klag, M.D., M.P.H.

    Department

    Medicine

  • Michael Matunis Lab

    Research in the Michael Matunis Lab focuses on the SUMO family of small ubiquitin-related proteins. We study the covalent conjugation of SUMOs to other cellular proteins, which regulates numerous processes needed for cell growth and differentiation, and which, when defective, can lead to conditions such as cancer, neurodegenerative disease and diabetes.

    Research Areas: SUMO proteins, neurodegenerative diseases, cellular biology, proteomics, cancer, diabetes, malaria

    Principal Investigator

    Michael Matunis, Ph.D.

    Department

    Cell Biology

  • Michael Wolfgang Laboratory

    The Wolfgang Laboratory is interested in understanding the metabolic properties of neurons and glia at a mechanistic level in situ. Some of the most interesting, enigmatic and understudied cells in metabolic biochemistry are those of the nervous system. Defects in these pathways can lead to devastating neurological disease. Conversely, altering the metabolic properties of the nervous system can have surprisingly beneficial effects on the progression of some diseases. However, the mechanisms of these interactions are largely unknown.

    We use biochemical and molecular genetic techniques to study the molecular mechanisms that the nervous system uses to sense and respond to metabolic cues. We seek to understand the neurometabolic regulation of behavior and physiology in obesity, diabetes and neurological disease.

    Current areas of study include deconstructing neurometabolic pathways to understand the biochemistry of the nervous system and how these metabolic pathways impact animal beh...avior and physiology, metabolic heterogeneity and the evolution of metabolic adaptation. view more

    Research Areas: metabolic biochemistry, obesity, diabetes, genomics, neurology, nervous system, molecular biology

    Principal Investigator

    Michael J. Wolfgang, Ph.D.

    Department

    Biological Chemistry

  • Mihail Zilbermint Lab

    Research in the Mihail Zilbermint Lab focuses on diabetes, adrenal disease and thyroid disease. Recent areas of focus include pseudohypoaldosteronism type 1 related to novel variants of SCNN1B gene, genetic variance in the ARMC5 gene in primary macronodular adrenocortical hyperplasia and hyperaldosteronism due to de novo KCNJ5 mutation.

    Research Areas: hypoaldosteronism, genetics, tumor, diabetes, hyperplasia, protein kinases

    Principal Investigator

    Mihail Zilbermint, M.D.

    Department

    Medicine

  • Naresh Punjabi Lab

    The Naresh Punjabi Lab primarily studies sleep apnea, epidemiology, cardiovascular disease, insulin resistance and type 2 diabetes. Our current research focuses on the epidemiology of sleep apnea with a particular emphasis on associated sequelae, including insulin resistance, type 2 diabetes mellitus and cardiovascular disease. We have been part of the multi-center Sleep Heart Health Study, an epidemiological study on the longitudinal effects of sleep apnea on hypertension, cardiovascular disease and mortality. Our lab is examining the independent effects of intermittent hypoxia on various pathways to help elucidate the links between sleep apnea, insulin resistance and metabolic dysfunction.

    Research Areas: epidemiology, type 2 diabetes, insulin resistance, cardiovascular diseases, sleep apnea

    Principal Investigator

    Naresh Punjabi, M.D., Ph.D.

    Department

    Medicine

  • Nestoras Mathioudakis Lab

    The Nestoras Mathioudakis Lab focuses on improving patient safety and quality for hospitalized diabetes patients. Our interests include inpatient glucose management, type 2 diabetes mellitus and diabetic foot ulcers.

    Research Areas: glucose management, health care quality, safety, diabetes, diabetic foot ulcers

    Lab Website

    Principal Investigator

    Nestoras Mathioudakis, M.D., M.H.S.

    Department

    Medicine

  • Nisa Maruthur Lab

    The Nisa Maruthur Lab studies primary care; individualized medicine for the prevention and treatment of type 2 diabetes and obesity; pharmacogenomics of type 2 diabetes; and comparative effectiveness.

    Research Areas: primary care, obesity, pharmacogenomics, diabetes

    Principal Investigator

    Nisa Maruthur, M.D., M.H.S.

    Department

    Medicine

  • Richard Rivers Lab

    The Richard Rivers Lab researches vascular communication with a focus on microcirculation physiology. Our team seeks to determine how metabolic demands are passed between tissue and the vascular network as well as along the vascular network itself. Our goal is to better understand processes of diseases such as cancer and diabetes, which could lead to the development of more targeted drugs and treatment. We are also working to determine the role for inwardly rectifying potassium channels (Kir) 2.1 and 6.1 in signaling along the vessel wall as well as the role of gap junctions.

    Research Areas: cancer, potassium, diabetes, vascular biology, vascular, microcirculation

  • Rita Kalyani Lab

    Research in the Rita Kalyani Lab examines the decreased physical functioning observed in patients with diabetes as they age. Through several ongoing epidemiological cohorts, we are investigating the association of high blood glucose and high insulin levels with accelerated muscle loss, and possible contributions to the physical disability observed in diabetes. We are currently involved in clinical studies that aim to understand the underlying mechanisms for these associations and to facilitate the development of novel strategies to prevent muscle loss and disability in people with diabetes.

    Research Areas: metabolism, insulin, diabetes, cardiovascular diseases, endocrinology, blood glucose

    Principal Investigator

    Rita Kalyani, M.D., M.H.S.

    Department

    Medicine

  • Sandra Gabelli Lab

    The Gabelli lab research is focused on structural, mechanistic and functional aspects of enzyme activation that play a role in the biology of human diseases such as cancer, parasitic infection and cardiovascular disease. Their work seeks to:

    1. Understand how molecular events at the recognition level coordinate and trigger events in the cells
    2. Translate structural and mechanistic information on protein:protein interactions at the cytoplasmic level into preventive and therapeutic treatment for human disease.

    To achieve a comprehensive understanding, they are studying cytoplasmic protein-protein interactions involved in regulation of pathways such as PI3K and Sodium Voltage gated channels. Their research integrates structural biology and chemical biology and it is focused on drug discovery for targeted therapies.

    Research Areas: biochemistry, chemical biology, cell biology, structural biology, proteomics, cancer, diarrhea, diabetes, drugs, cellular signaling, inflammation, pharmacology

    Lab Website

    Principal Investigator

    Sandra Gabelli, Ph.D.

    Department

    Medicine

  • Schneck Lab

    Effective immune responses are critical for control of a variety of infectious disease including bacterial, viral and protozoan infections as well as in protection from development of tumors. Central to the development of an effective immune response is the T lymphocyte which, as part of the adaptive immune system, is central in achieving sterilization and long lasting immunity. While the normal immune responses is tightly regulated there are also notable defects leading to pathologic diseases. Inactivity of tumor antigen-specific T cells, either by suppression or passive ignorance allows tumors to grow and eventually actively suppress the immune response. Conversely, hyperactivation of antigen-specific T cells to self antigens is the underlying basis for many autoimmune diseases including: multiple sclerosis; arthritis; and diabetes. Secondary to their central role in a wide variety of physiologic and pathophysiologic responses my lab takes a broad-based approach to studying T cell re...sponses. view more

    Research Areas: t-cell responses, pathologic diseases, autoimmune diseases, pathology, immune system

    Lab Website

    Principal Investigator

    Jonathan Schneck, M.D., Ph.D.

    Department

    Pathology

  • Sherita Golden Lab

    Research in the Sherita Golden Lab focuses on identifying endocrine risk factors associated with the development of diabetes and cardiovascular disease. We conduct our research by incorporating measures of hormonal function into the design of clinical trials of cardiovascular risk modification, observational studies of incident cardiovascular disease and diabetes, and studies evaluating diabetic complications.

    Research Areas: epidemiology, stress, hormones, diabetes, cardiovascular diseases, endocrinology

    Principal Investigator

    Sherita Golden, M.D., M.H.S.

    Department

    Medicine

  • Spyridon Marinopoulos Lab

    Research interests in the Spyridon Marinopoulos Lab include evidence-based medicine. Recently, we examined the impact of health information technology (IT) that supports patient-centered care (PCC) and found substantial evidence that health IT applications with PCC-related components have a positive effect on health care outcomes.

    Research Areas: breast cancer, patient-centered health care, health IT, diabetes, evidence-based medicine

    Principal Investigator

    Spyridon Marinopoulos, M.B.A., M.D.

    Department

    Medicine

  • Suzanne Jan de Beur Lab

    Researchers in the Suzanne Jan de Beur Lab are interested in bone and mineral metabolism, endocrinology and osteoporosis. In addition, we focus on hormonal regulators of phosphate homeostasis, parathyroid hormone signaling and the molecular basis of hypophosphatemic disorders.

    Research Areas: osteoporosis, metabolism, diabetes, endocrinology

    Principal Investigator

    Suzanne Jan De Beur, M.D.

    Department

    Medicine

  • The Hamad Lab

    Our research interest is crystalized into three main areas:
    1. Type-1 diabetes - Our focus is on understanding how the Fas death pathway regulates the disease and how extracted information can be used to protect high risk individuals and those with new-onset disease.
    2. Type 2 diabetes and Obesity - Our lab is studying the role of heparan sulfate proteoglycans (HSPG) in regulating body fat and glucose clearance.
    3. Double negative ??T cells - Our studies suggest a critical role for these cells in protecting kidneys from Ischemia reperfusion injury (IRI). Our current focus is understanding their origin and physiological functions.

    Research Areas: type 1 diabetes, type 2 diabetes, obesity, Double negative alpha/beta T cells, T cells

    Lab Website

    Principal Investigator

    Abdel-Rahim Hamad, M.V.Sc., Ph.D.

    Department

    Pathology

  • Thomas W. Donner Lab

    The Thomas W. Donner Lab focuses on type 1 and type 2 diabetes, with an emphasis on the prevention of complications in patients with these conditions. We’re currently collaborating with Dr. Abdel Hamad to inhibit B-regulatory cell apoptosis through a novel monoclonal antibody that targets the probable apoptotic factor. We also lead a multi-center, international consortium of researchers studying ways to prevent type 1 diabetes and preserve insulin secretion in people who have been recently diagnosed with the chronic condition.

    Research Areas: cell apoptosis, insulin, diabetes

    Principal Investigator

    Thomas Donner, M.D.

    Department

    Medicine

  • Todd Brown Lab

    The Todd Brown Lab focuses on metabolic, endocrine and skeletal abnormalities in HIV-infected patients, particularly as these factors relate to aging. Our studies take an epidemiologic approach to understanding the occurrence and prevalence of insulin resistance, diabetes, and anthropometric changes in HIV patients and their relationship to antiretroviral treatment.

    Research Areas: antiretroviral therapies, insulin resistance, metabolism, HIV, diabetes, endocrinology, skeletal abnormalities

    Principal Investigator

    Todd Brown, M.D., Ph.D.

    Department

    Medicine

  1. 1