Find a Research Lab

Enter a research interest, principal investigator or keyword

Displaying 1 to 5 of 5 results for cochlear implant

Show: 10 · 20 · 50

  1. 1
  • Bowditch Research Group

    Bowditch Research Group conducts research regarding speech discrimination in background noise, cochlear implants and osseointegrated hearing devices

    Research Areas: implantable technology, audiology, cochlear implant, hearing loss, hearing aids

  • Carey Research Group

    John Carey’s Research Group conducts research regarding diseases of the inner ear that affect both balance and hearing mechanisms. Key interests include superior semicircular canal dehiscence syndrome (SCDS), the normal vestibular reflexes and how they change with age, novel intratympanic treatments (i.e., middle ear injections) for conditions like Menière’s disease and sudden hearing loss, and the mechanisms of vestibular migraine. With Lloyd Minor, Dr. Carey helped develop the operation to repair the superior canal in patients with SCDS using image-guided surgery. Dr. Carey has been funded by the National Institutes of Health – National Institute on Deafness and Other Communication Disorders to study inner ear balance function in Menière’s disease and steroid treatment of sudden hearing loss.

    Research Areas: meniere's disease, vertigo, audiology, neurotology/otology, superior canal dehiscence, cochlear implant, hearing loss

  • Laboratory of Auditory Neurophysiology

    Research in the Laboratory of Auditory Neurophysiology aims to understand brain mechanism responsible for auditory perception and vocal communication in a naturalistic environment. We are interested in revealing neural mechanisms operating in the cerebral cortex and how cortical representations of biologically important sounds emerge through development and learning.

    We use a combination of state-of-the-art neurophysiological techniques and sophisticated computational and engineering tools to tackle our research questions.

    Current research in our laboratory includes the following areas (1) neural basis of auditory perception, (2) neural mechanisms for vocal communication and social interaction, and (3) cortical processing of cochlear implant stimulation.

    Research Areas: neurophysiology, neuroengineering, audiology, cochlear implant, learning, language

    Lab Website

    Principal Investigator

    Xiaoqin Wang, Ph.D.

    Department

    Biomedical Engineering

  • Nae-Yuh Wang Lab

    The Nae-Yuh Wang Lab concentrates on a wide range of multicenter studies and randomized controlled trials. Recent studies have focused on pediatric cochlear implantation and longitudinal data analysis. One recent study found that partnering with primary care providers to deliver weight loss programs may promote greater participant satisfaction and weight loss. Another active study is assessing the effectiveness of promising interventions to reduce race disparities in live donor kidney transplantation.

    Research Areas: epidemiology, longitudinal data, kidney transplants, cochlear implant, biostatistics, weight loss

    Principal Investigator

    Nae-Yuh Wang, M.S., Ph.D.

    Department

    Medicine

  • Vestibular NeuroEngineering Lab

    Research in the Vestibular NeuroEngineering Lab (VNEL) focuses on restoring inner ear function through “bionic” electrical stimulation, inner ear gene therapy, and enhancing the central nervous system’s ability to learn ways to use sensory input from a damaged inner ear. VNEL research involves basic and applied neurophysiology, biomedical engineering, clinical investigation and population-based epidemiologic studies. We employ techniques including single-unit electrophysiologic recording; histologic examination; 3-D video-oculography and magnetic scleral search coil measurements of eye movements; microCT; micro MRI; and finite element analysis. Our research subjects include computer models, circuits, animals and humans. For more information about VNEL, click here.
    VNEL is currently recruiting subjects for two first-in-human clinical trials:
    1) The MVI Multichannel Vestibular Implant Trial involves implantation of a “bionic” inner ear stimulator intended to partially restore sensation... of head movement. Without that sensation, the brain’s image- and posture-stabilizing reflexes fail, so affected individuals suffer difficulty with blurry vision, unsteady walking, chronic dizziness, mental fogginess and a high risk of falling. Based on designs developed and tested successfully in animals over the past the past 15 years at VNEL, the system used in this trial is very similar to a cochlear implant (in fact, future versions could include cochlear electrodes for use in patients who also have hearing loss). Instead of a microphone and cochlear electrodes, it uses gyroscopes to sense head movement, and its electrodes are implanted in the vestibular labyrinth. For more information on the MVI trial, click here.
    2) The CGF166 Inner Ear Gene Therapy Trial involves inner ear injection of a genetically engineered DNA sequence intended to restore hearing and balance sensation by creating new sensory cells (called “hair cells”). Performed at VNEL with the support of Novartis and through a collaboration with the University of Kansas and Columbia University, this is the world’s first trial of inner ear gene therapy in human subjects. Individuals with severe or profound hearing loss in both ears are invited to participate. For more information on the CGF166 trial, click here.
    view less

    Research Areas: neuroengineering, audiology, multichannel vestibular prosthesis, balance disorders, balance, vestibular, prosthetics, cochlea, vestibular implant

  1. 1