Find a Research Lab

Enter a research interest, principal investigator or keyword

Displaying 1 to 14 of 14 results for chemistry

Show: 10 · 20 · 50

  1. 1
  • Caren L. Freel Meyers Laboratory

    The long-term goal of the Caren L. Freel Meyers Laboratory is to develop novel approaches to kill human pathogens, including bacterial pathogens and malaria parasites, with the ultimate objective of developing potential therapeutic agents.

    Toward this goal, we are pursuing studies of bacterial isoprenoid biosynthetic enzymes comprising the methylerythritol phosphate (MEP) pathway essential in many human pathogens. Studies focus on understanding mechanism and regulation in the pathway toward the development of selective inhibitors of isoprenoid biosynthesis. Our strategies for creating new anti-infective agents involve interdisciplinary research in the continuum of organic, biological and medicinal chemistry. Molecular biology, protein expression and biochemistry, and synthetic chemistry are key tools for our research.

    Research Areas: bacterial pathogens, biochemistry, enzymes, infectious disease, protein expression, synthetic chemistry, isoprenoid biosynthesis, malaria, pharmacology, chemistry, molecular biology

  • Cullman Chemoprotection Center

    Research in the Cullman Chemoprotection Center focuses on developing nutritional strategies for chronic disease prevention in humans. Our work draws from natural product chemistry, enzymology, nutritional epidemiology and clinical research. A number of our studies look at the glucosinolates and isothiocyanates found in cruciferous vegetables and in Moringa oleifera, also known as the “drumstick tree.” Our team has found that broccoli sprouts are a rich source of the enzyme inducers that detoxify carcinogens and that two of the inducers — sulforaphane in broccoli and isothiocyanate in Moringa oleifera — act as strong antibiotics against Helicobacter pylori, which can cause peptic ulcer disease and stomach cancer.

    Research Areas: nutrition, chemoprotection, cancer, disease prevention, chemistry

  • Daniel Raben Laboratory

    The Raben Laboratory is focused on understanding the biochemistry and chemistry underlying the molecular aspects involved in regulating lipid metabolizing signaling enzymes and the physiological roles of this regulation. Controlling lipid-metabolizing enzymes involves modulating their sub-cellular distribution and their intrinsic enzymatic activity. Researchers in the Raben laboratory examine three families of lipid-metabolizing signaling enzymes: diacylglycerol kinases, phospholipases D, and phospholipases C.

    Research Areas: biochemistry, lipid-metabolizing enzymes, cellular signaling, chemistry

    Principal Investigator

    Daniel Raben, Ph.D.


    Biological Chemistry

  • David Shortle Lab

    The principal research interest of the Shortle Lab is protein folding--how amino acid sequence information encodes three-dimensional structure. We are taking a combined experimental and computational approach to this longstanding puzzle of fundamental biochemistry. In addition, the laboratory is working to predict protein structure from sequence in ways that make the underlying physical chemistry transparent and the relative contributions of different interactions quantifiable.

    Research Areas: biochemistry, computational biology, protein folding, protein structure

  • Goley Lab

    The Goley Lab is broadly interested in understanding cellular organization and dynamic reorganization, with particular focus on the roles of the cytoskeleton in these phenomena. We use cell biological, biochemical, genetic and structural approaches to dissect cytoskeletal processes with the aim of understanding how they work in molecular detail. Currently, we are focused on investigating the mechanisms underlying cytokinesis in bacteria. A deep understanding of cytoskeletal function in bacteria will aid in the identification of targets for novel antibiotic therapies and in efforts in synthetic biology.

    Research Areas: biological chemistry, cell biology, genomics, cytoskeleton

    Lab Website

    Principal Investigator

    Erin Goley, Ph.D.


    Biological Chemistry

  • Green Group

    The Green Group is the biomaterials and drug delivery laboratory in the Biomedical Engineering Department at the Johns Hopkins University School of Medicine. Our broad research interests are in cellular engineering and in nanobiotechnology. We are particularly interested in biomaterials, controlled drug delivery, stem cells, gene therapy, and immunobioengineering. We are working on the chemistry/biology/engineering interface to answer fundamental scientific questions and create innovative technologies and therapeutics that can directly benefit human health.

    Research Areas: nanobiotechnology, stem cells, biomedical engineering, drugs, immunobioengineering

    Lab Website

    Principal Investigator

    Jordan Green, Ph.D.


    Biomedical Engineering

  • Herschel Wade Lab

    The emergence of structural genomics, proteomics and the large-scale sequencing of many genomes provides experimental access to regions of protein sequence-structure-function landscapes which have not been explored through traditional biochemical methods. Protein structure-function relationships can now be examined rigorously through the characterization of protein ensembles, which display structurally convergent--divergent solutions to analogous or very similar functional properties.

    In this modern biochemical context, the Herschel Wade Lab will use protein libraries, chemistry, biophysics, molecular biology and structural methods to examine the basis of molecular recognition in the context of several important biological problems, including structural and mechanistic aspects of multi-drug resistance, ligand-dependent molecular switches and metal ion homeostasis.

    Research Areas: biophysics, biochemistry, proteomics, genomics, drugs, molecular biology

  • HPTN (HIV Prevention Trials Network) Network Lab

    HPTN (HIV Prevention Trials Network) Network Laboratory (NL) is responsible for collecting, testing and reporting results from biological samples; assisting in the development and quality assurance assessment of local laboratory capacity at the Clinical Trials Units (CTUs) participating in HPTN clinical trials (; and identifying and implementing state-of-the-art assays and technologies to advance the scientific agenda of the Network.

    Research Areas: microbiology, blood disorders, molecular pathology, immunology, cytogenetics, HIV, transfusion medicine, chemistry

    Lab Website

    Principal Investigator

    Susan Eshleman, M.D., Ph.D.



  • James Barrow Laboratory

    The James Barrow Laboratory studies drug discovery at the Lieber Institute. He leads research related to medicinal chemistry, biology, and drug metabolism, with the goal of validating novel mechanisms and advancing treatments for disorders of brain development.

    Research Areas: brain development, drugs, chemistry, biology

  • Karen Reddy Laboratory

    The focus of the research in the Reddy Laboratory is to begin to understand how the nuclear periphery and other subcompartments contribute to general nuclear architecture and to specific gene regulation. Our research goals can be broken down into three complementary areas of research: understanding how genes are regulated at the nuclear periphery, deciphering how genes are localized (or "addressed") to specific nuclear compartments and how these processes are utilized in development and corrupted in disease.

    Research Areas: biological chemistry, cell biology, nuclear structure, epigenetics, gene regulation

    Principal Investigator

    Karen Reddy, Ph.D.


    Biological Chemistry

  • Laboratory for Integrated NanoDiagnostics (LIND)

    The Laboratory for Integrated NanoDiagnostics (LIND) is developing innovative technologies for accurate, fast, compact, portable, manufacturable, low-cost diagnostics for a wide variety of applications. Our current focus is a large-scale collaboration with imec, a leading microelectronics company in Leuven, Belgium, where our silicon is designed and manufactured. With major funding from miDiagnostics we are inventing solutions that are opening new avenues.

    Research Areas: quantitative RT-PCR, in vitro diagnostics, surface chemistry, lens-free imaging, microfluidics, colorimetry, fluorimetry

    Principal Investigator

    Stuart Ray, M.D.



  • Mikhail Pletnikov Laboratory

    The Mikhail Pletnikov Laboratory is interested in the neurobiology of neurodevelopmental diseases such as schizophrenia and autism. The major focus of our laboratory is to evaluate how adverse environmental factors and vulnerable genes interact to affect brain and behavior development. We address these experimental questions by using methods of cell and molecular biology, neuroimmunology, neurochemistry, psychopharmacology and developmental psychobiology. The current projects in our laboratory are: (1) Genetic risk factors in neuron-astrocyte interaction during neurodevelopment, (2) Gene-environment interplay in the pathogenesis of psychiatric conditions, and (3) The neuroimmune interactions in abnormal neurodevelopment

    Research Areas: autism, immunology, neurobiology, cell biology, neurodevelopment, developmental psychobiology, schizophrenia, pharmacology, chemistry, molecular biology

  • Neuromodulation and Advanced Therapies Center

    We investigate the brain networks and neurotransmitters involved in symptoms of movement disorders, such as Parkinson's disease, and the mechanisms by which modulating these networks through electrical stimulation affects these symptoms. We are particularly interested in the mechanisms through which neuromodulation therapies like deep brain stimulation affect non-motor brain functions, such as cognitive function and mood. We use imaging of specific neurotransmitters, such as acetylcholine and dopamine, to understand the changes in brain chemistry associated with the clinical effects of deep brain stimulation and to predict which patients are likely to have changes in non-motor symptoms following DBS. Through collaborations with our neurosurgery colleagues, we explore brain function by making recordings during DBS surgery during motor and non-motor tasks. Dr. Mills collaborates with researchers in the Department of Neurosurgery, the Division of Geriatric and Neuropsychiatry in the Depar...tment of Psychiatry and Behavioral Sciences and in the Division of Nuclear Medicine within the Department of Radiology to translate neuroimaging and neurophysiology findings into clinical applications. view more

    Research Areas: Molecular imaging of effects of deep brain stimulation on cognitive function in Parkinson's disease, Trajectories and types of cognitive impairment in Parkinson's disease, Effects of neuromodulation on impulsivity and addiction-related behaviors, Parkinson's disease, Effects of transcranial direct current stimulation on mood disorders and cognitive dysfunction in Parkinson's disease, Relationship between patient-reported and objective cognitive impairments in Parkinson's disease

    Principal Investigator

    Kelly Mills, M.D., M.H.S.



  • Peter Agre Lab

    Work in the Peter Agre Lab focuses on the molecular makeup of human diseases, particularly malaria, hemolytic anemias and blood group antigens. In 2003, Dr. Agre earned the Nobel Prize in Chemistry for discovering aquaporin water channels. Building on that discovery, our recent research has included studies on the protective role of the brain water channel AQP4 in murine cerebral malaria, as well as defective urinary-concentrating ability as a result of a complete deficiency in aquaporin-1. We also collaborate on scientific training and research efforts with 20 Baltimore-area labs and in field studies in Zambia and Zimbabwe.

    Research Areas: infectious disease, anemia, malaria

    Principal Investigator

    Peter Agre, M.D.


    Biological Chemistry

  1. 1