Find a Research Lab

Enter a research interest, principal investigator or keyword

Displaying 11 to 13 of 13 results for central nervous system

Show: 10 · 20 · 50

  1. 1
  2. 2
  • The Chen Laboratory for Neurodegenerative Diseases

    The Chen laboratory is interested in understanding the pathogenesis of neurodegenerative disorders, developing diagnostic markers and validating therapeutic targets. The laboratory uses an interdisciplinary approach involving Drosophila model to study the mechanisms underlying neurodegeneration in human central nervous system.

    Research Areas: neurodegenerative diseases

    Lab Website

    Principal Investigator

    Liam Chen, M.D., Ph.D.

    Department

    Pathology

  • Vestibular NeuroEngineering Lab

    Research in the Vestibular NeuroEngineering Lab (VNEL) focuses on restoring inner ear function through “bionic” electrical stimulation, inner ear gene therapy, and enhancing the central nervous system’s ability to learn ways to use sensory input from a damaged inner ear. VNEL research involves basic and applied neurophysiology, biomedical engineering, clinical investigation and population-based epidemiologic studies. We employ techniques including single-unit electrophysiologic recording; histologic examination; 3-D video-oculography and magnetic scleral search coil measurements of eye movements; microCT; micro MRI; and finite element analysis. Our research subjects include computer models, circuits, animals and humans. For more information about VNEL, click here.
    VNEL is currently recruiting subjects for two first-in-human clinical trials:
    1) The MVI Multichannel Vestibular Implant Trial involves implantation of a “bionic” inner ear stimulator intended to partially restore sensation... of head movement. Without that sensation, the brain’s image- and posture-stabilizing reflexes fail, so affected individuals suffer difficulty with blurry vision, unsteady walking, chronic dizziness, mental fogginess and a high risk of falling. Based on designs developed and tested successfully in animals over the past the past 15 years at VNEL, the system used in this trial is very similar to a cochlear implant (in fact, future versions could include cochlear electrodes for use in patients who also have hearing loss). Instead of a microphone and cochlear electrodes, it uses gyroscopes to sense head movement, and its electrodes are implanted in the vestibular labyrinth. For more information on the MVI trial, click here.
    2) The CGF166 Inner Ear Gene Therapy Trial involves inner ear injection of a genetically engineered DNA sequence intended to restore hearing and balance sensation by creating new sensory cells (called “hair cells”). Performed at VNEL with the support of Novartis and through a collaboration with the University of Kansas and Columbia University, this is the world’s first trial of inner ear gene therapy in human subjects. Individuals with severe or profound hearing loss in both ears are invited to participate. For more information on the CGF166 trial, click here.
    view more

    Research Areas: neuroengineering, audiology, multichannel vestibular prosthesis, balance disorders, balance, vestibular, prosthetics, cochlea, vestibular implant

  • William Agnew Laboratory

    The Agnew Laboratory examines the structure, mechanism and regulation of ion channels that mediate the action potential in nerve and muscle, as well as intracellular calcium concentrations. Much of our work has centered on voltage-activated sodium channels responsible for the inward currents of the action potential. These studies encompass biochemical, molecular biological and biophysical studies of Na channel structure, gating and conductance mechanisms, the stages of channel biosynthesis and assembly, and mechanisms linked to channel neuromodulation.

    In recent molecular cloning and expression studies, we have characterized mutations in the human muscle sodium channel that appear to underlie certain inherited myopathies. New studies being pursued in our group also address the questions of structure, receptor properties, and biophysical behavior of intracellular calcium release channels activated by inositol-1,4,5-triphosphate. These channels are expressed at extremely high levels ...in selected cells of the central nervous system, and may play a role in modulating neuronal excitability. view less

    Research Areas: central nervous system, neuronal excitability, biophysiology, biochemistry, sodium channels, ion channels, molecular biology

    Principal Investigator

    William Agnew, Ph.D.

    Department

    Physiology

  1. 1
  2. 2