Find a Research Lab

Enter a research interest, principal investigator or keyword

Displaying 41 to 47 of 47 results for cell biology

Show: 10 · 20 · 50

  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  • Translational Neurobiology Laboratory

    The goals of the Translational neurobiology Laboratory are to understand the pathogenesis and cell death pathways in neurodegenerative disorders to reveal potential therapeutic targets for pharmaceutical intervention; to investigate endogenous survival pathways and try to induce these pathways to restore full function or replace lost neurons; and to identify biomarkers to mark disease function or replace lost neurons; and to identify biomarkers to mark disease progression and evaluate therapeutics. Our research projects focus on models of Huntington's disease and Parkinson's disease. We use a combination of cell biology and transgenic animal models of these diseases.

    Research Areas: Huntington's disease, neurodegenerative disorders, neurobiology, cell biology, Parkinson's disease

  • Urban Lab

    The Urban Lab studies rhomboid proteases--a class of enzymes that cut proteins to initiate signaling between cells as a form of communication that organizes embryo development. Current studies in the lab focus on the biophysics of how these enzymes function inside the cell membrane, where it's hard for catalysis to take place. Because rhomboid intramembrane proteolysis plays a central role in malaria infection and Parkinson's disease pathogenesis, these studies may have therapeutic implications.

    Research Areas: enzymes, cell biology, membrane biophysics, structural biology, synthetic chemistry, malaria, Parkinson's disease, rhomboid proteases

  • William B. Guggino Lab

    Work in the William B. Guggino Lab focuses on the structure of the cystic fibrosis transmembrane conductance regulator (CFTR) and water channels; the molecular structure of transport proteins in epithelial cell membranes; and gene therapies to treat cystic fibrosis (CF) patients. We are also working to identify CF’s specific defect in chloride channel regulation. One recent study showed that insulin-like growth factor 1 (IGF-1) enhances the protein expression of CFTR.

    Research Areas: cell biology, cystic fibrosis, kidney diseases, gene therapy, ion channels

    Lab Website

    Principal Investigator

    William Guggino, Ph.D.

    Department

    Physiology

  • William B. Isaacs Laboratory

    Prostate cancer is the most commonly diagnosed malignancy in men in the United States, although our understanding of the molecular basis for this disease remains incomplete. We are interested in characterizing consistent alterations in the structure and expression of the genome of human prostate cancer cells as a means of identifying genes critical in the pathways of prostatic carcinogenesis.

    We are focusing on somatic genomic alterations occurring in sporadic prostate cancers, as well as germline variations which confer increases in prostate cancer risk. Both genome wide and candidate gene approaches are being pursued, and cancer associated changes in gene expression analyses of normal and malignant prostate cells are being cataloged as a complementary approach in these efforts.

    It is anticipated that this work will assist in providing more effective methodologies to identify men at high risk for this disease, in general, and in particular, to identify new markers of prognostic... and therapeutic significance that could lead to more effective management of this common disease. view more

    Research Areas: cell biology, prostate cancer, molecular genetics

    Lab Website

    Principal Investigator

    William Isaacs, Ph.D.

    Department

    Urology

  • Xiao Group

    The objective of the Xiao Group's research is to study the dynamics of cellular processes as they occur in real time at the single-molecule and single-cell level. The depth and breadth of our research requires an interdisciplinary approach, combining biological, biochemical and biophysical methods to address compelling biological problems quantitatively. We currently are focused on dynamics of the E. coli cell division complex assembly and the molecular mechanism in gene regulation.

    Research Areas: biophysics, biochemistry, E. coli, cell biology, genomics, molecular biology

  • Yarema Laboratory

    The Yarema Lab uses chemical biology, molecular and cell biology, and materials science methods to study and manipulate glycosylation. The goal of our research is to better understand human disease while furthering carbohydrate-based therapies. Our laboratory's research goals are to (1) Develop sugar analogs into viable and versatile drug candidates, (2) Apply metabolic glycoengineering to tissue engineering and stem cell research, (3) Use non-invasive magnetic stimuli to probe the effects of glycoengineering (and also to treat neurological disorders), and (4) Extend our sugar-based drug candidates into animal models and the clinic

    Research Areas: carbohydrate-based therapies, chemical biology, stem cells, cell biology, materials science, neurological disorders, molecular biology

    Lab Website

    Principal Investigator

    Kevin Yarema, Ph.D.

    Department

    Biomedical Engineering

  • Zack Wang Lab

    The Wang lab focuses on the signals that direct the differentiation of pluripotent stem cells, such as induced-pluripotent stem (iPS) cells, into hematopoietic and cardiovascular cells. Pluripotent stem cells hold great potential for regenerative medicine. Defining the molecular links between differentiation outcomes will provide important information for designing rational methods of stem cell manipulation.

    Research Areas: pluripotent stem cells, stem cells, molecular genetics, stem cell biology, gene therapy

    Principal Investigator

    Zack Wang, Ph.D.

    Department

    Medicine

  1. 1
  2. 2
  3. 3
  4. 4
  5. 5