Find a Research Lab

Enter a research interest, principal investigator or keyword

Displaying 31 to 40 of 49 results for cell biology

Show: 10 · 20 · 50

  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  • Sandra Gabelli Lab

    The Gabelli lab research is focused on structural, mechanistic and functional aspects of enzyme activation that play a role in the biology of human diseases such as cancer, parasitic infection and cardiovascular disease. Their work seeks to:

    1. Understand how molecular events at the recognition level coordinate and trigger events in the cells
    2. Translate structural and mechanistic information on protein:protein interactions at the cytoplasmic level into preventive and therapeutic treatment for human disease.

    To achieve a comprehensive understanding, they are studying cytoplasmic protein-protein interactions involved in regulation of pathways such as PI3K and Sodium Voltage gated channels. Their research integrates structural biology and chemical biology and it is focused on drug discovery for targeted therapies.

    Research Areas: biochemistry, chemical biology, cell biology, structural biology, proteomics, cancer, diarrhea, diabetes, drugs, cellular signaling, inflammation, pharmacology

    Lab Website

    Principal Investigator

    Sandra Gabelli, Ph.D.

    Department

    Medicine

  • Sarbjit Saini Lab

    The research in the Sarbjit Saini Laboratory focuses on IgE receptor biology and IgE receptor-mediated activation of blood basophils and mast cells. We have examined the role of IgE receptor expression and activation in allergic airways disease, anaphylaxis and chronic urticaria. Our research has been supported by the NIH, American Lung Association and the AAAAI. Our current research interests have focused mechanisms of diease in allergic asthma, allergic rhinitis and also translational studies in chronic idiopathic urticaria.

    Research Areas: anaphylaxis, airway diseases, cell biology, asthma, allergies, chronic idiopathic urticaria

    Principal Investigator

    Sarbjit Saini, M.D.

    Department

    Medicine

  • Sean T. Prigge Lab

    Current research in the Sean T. Prigge Lab explores the biochemical pathways found in the apicoplast, an essential organelle found in malaria parasites, using a combination of cell biology and genetic, biophysical and biochemical techniques. We are particularly focused on the pathways used for the biosynthesis and modification of fatty acids and associated enzyme cofactors, including pantothenate, lipoic acid, biotin and iron-sulfur clusters. We want to better understand how the cofactors are acquired and used, and whether they are essential for the growth of blood-stage malaria parasites.

    Research Areas: biochemistry, enzymes, immunology, apicoplasts, malaria, molecular microbiology

  • Sean Taverna Laboratory

    The Taverna Laboratory studies histone marks, such as lysine methylation and acetylation, and how they contribute to an epigenetic/histone code that dictates chromatin-templated functions like transcriptional activation and gene silencing. Our lab uses biochemistry and cell biology in a variety of model organisms to explore connections between gene regulation and proteins that write and read histone marks, many of which have clear links to human diseases like leukemia and other cancers. We also investigate links between small RNAs and histone marks involved in gene silencing.

    Research Areas: biochemistry, histone marks, cell biology, leukemia, cancer, epigenetics, eukaryotic cells, gene silencing, RNA

  • Seydoux Lab

    The Seydoux Lab studies the earliest stages of embryogenesis to understand how single-celled eggs develop into complex multicellular embryos. We focus on the choice between soma and germline, one of the first developmental decisions faced by embryos. Our goal is to identify and characterize the molecular mechanisms that activate embryonic development, polarize embryos, and distinguish between somatic and germline cells, using Caenorhabditis elegans as a model system. Our research program is divided into three areas: oocyte-to-embryo transition, embryonic polarity and soma-germline dichotomy.

    Research Areas: cell biology, soma cells, genomics, germ cells, embryo, molecular biology

  • Shigeki Watanabe Lab

    Research in the Shigeki Watanabe Lab focuses on the cellular and molecular characterizations of rapid changes that occur during synaptic plasticity. Our team is working to determine the composition and distribution of proteins and lipids in the synapse as well as understand how the activity alters their distribution. Ultimately, we seek to discover how the misregulation of protein and lipid compositions lead to synaptic dysfunction. Our studies make use of cutting-edge electron microscopy techniques in combination with biochemical and molecular approaches.

    Research Areas: microscopy, cell biology, proteins, lipids, molecular biology

    Lab Website

    Principal Investigator

    Shigeki Watanabe, Ph.D.

    Department

    Cell Biology

  • Steven Beaudry Lab

    Research in the Steven Beaudry Lab aims to better understand the cellular and molecular mechanisms behind cardiovascular disease in pregnancy. Our goal is to develop more effective treatments and improve patient outcomes.

    Research Areas: cell biology, cardiovascular diseases, pregnancy, molecular biology

  • Stivers Lab

    The Stivers Lab is broadly interested in the biology of the RNA base uracil when it is present in DNA. Our work involves structural and biophysical studies of uracil recognition by DNA repair enzymes, the central role of uracil in adapative and innate immunity, and the function of uracil in antifolate and fluoropyrimidine chemotherapy. We use a wide breadth of structural, chemical, genetic and biophysical approaches that provide a fundamental understanding of molecular function. Our long-range goal is to use this understanding to design novel small molecules that alter biological pathways within a cellular environment. One approach we are developing is the high-throughput synthesis and screening of small molecule libraries directed at important targets in cancer and HIV-1 pathogenesis.

    Research Areas: biophysics, enzymes, cell biology, uracil, cancer, HIV, DNA, RNA

  • Susan Michaelis Lab

    The Michaelis Laboratory's research goal is to dissect fundamental cellular processes relevant to human health and disease, using yeast and mammalian cell biology, biochemistry and high-throughput genomic approaches. Our team studies the cell biology of lamin A and its role in the premature aging disease Hutchinson-Gilford progeria syndrome (HGPS). Other research focuses on the core cellular machinery involved in recognition of misfolded proteins. Understanding cellular protein quality control machinery will ultimately help researchers devise treatments for protein misfolding diseases in which degradation is too efficient or not enough.

    Research Areas: biochemistry, cell biology, protein folding, lamin A, aging, genomics, Hutchinson-Gilford progeria syndrome, yeast

    Principal Investigator

    Susan Michaelis, Ph.D.

    Department

    Cell Biology

  • Svetlana Lutsenko Laboratory

    The research in the Svetlana Lutsenko Laboratory is focused on the molecular mechanisms that regulate copper concentration in normal and diseased human cells. Copper is essential for human cell homeostasis. It is required for embryonic development and neuronal function, and the disruption of copper transport in human cells results in severe multisystem disorders, such as Menkes disease and Wilson's disease. To understand the molecular mechanisms of copper homeostasis in normal and diseased human cells, we utilize a multidisciplinary approach involving biochemical and biophysical studies of molecules involved in copper transport, cell biological studies of copper signaling, and analysis of copper-induced pathologies using Wilson's disease gene knock-out mice.

    Research Areas: biophysics, biochemistry, menkes disease, Wilson's disease, cell biology, multisystem disorders, physiology, copper, molecular biology

    Lab Website

    Principal Investigator

    Svetlana Lutsenko, Ph.D.

    Department

    Physiology

  1. 1
  2. 2
  3. 3
  4. 4
  5. 5