Find a Research Lab

Enter a research interest, principal investigator or keyword

Displaying 1 to 25 of 25 results for cardiovascular diseases

Show: 10 · 20 · 50

  1. 1
  • Adrian Dobs Lab

    Researchers in the Adrian Dobs Lab study topics that include gonadal dysfunction, hyperlipidemia, diabetes mellitus, and the relationship between sex hormones and heart disease. We currently are investigating male gonadal function—with particular interest in new forms of male hormone replacement therapy—and hormonal changes related to aging.

    Research Areas: diabetes mellitus, hormones, hyperlipidemia, male gonadal function, cardiovascular diseases, endocrinology

    Principal Investigator

    Adrian Dobs, M.D., M.H.S.

    Department

    Medicine

  • Ami Shah Lab

    Researchers in the Ami Shah Lab study scleroderma and Raynaud’s phenomenon. We examine the relationship between cancer and scleroderma, with a focus on how and if cancer causes scleroderma to develop in some patients. We are currently conducting clinical research to study ways to detect cardiopulmonary complications in patients with scleroderma, biological and imaging markers of Raynaud’s phenomenon, and drugs that improve aspects of scleroderma.

    Research Areas: Raynaud's phenomenon, cancer, scleroderma, drugs, cardiovascular diseases

    Lab Website

    Principal Investigator

    Ami Shah, M.D.

    Department

    Medicine

  • Anderson Lab

    Research in the Anderson laboratory focuses on cellular signaling and ionic mechanisms that cause heart failure, arrhythmias and sudden cardiac death, major public health problems worldwide. Primary focus is on the multifunctional Ca2+ and calmodulin-dependent protein kinase II (CaMKII). The laboratory identified CaMKII as an important pro-arrhythmic and pro-cardiomyopathic signal, and its studies have provided proof of concept evidence motivating active efforts in biotech and the pharmaceutical industry to develop therapeutic CaMKII inhibitory drugs to treat heart failure and arrhythmias.

    Under physiological conditions, CaMKII is important for excitation-contraction coupling and fight or flight increases in heart rate. However, myocardial CaMKII is excessively activated during disease conditions where it contributes to loss of intracellular Ca2+ homeostasis, membrane hyperexcitability, premature cell death, and hypertrophic and inflammatory transcription. These downstream targets a...ppear to contribute coordinately and decisively to heart failure and arrhythmias. Recently, researchers developed evidence that CaMKII also participates in asthma.

    Efforts at the laboratory, funded by grants from the National Institutes of Health, are highly collaborative and involve undergraduate assistants, graduate students, postdoctoral fellows and faculty. Key areas of focus are:
    • Ion channel biology and arrhythmias
    • Cardiac pacemaker physiology and disease
    • Molecular physiology of CaMKII
    • Myocardial and mitochondrial metabolism
    • CaMKII and reactive oxygen species in asthma

    Mark Anderson, MD, is the William Osler Professor of Medicine, the director of the Department of Medicine in the Johns Hopkins University School of Medicine and physician-in-chief of The Johns Hopkins Hospital.
    view more

    Research Areas: heart failure, arrhythmia, cardiovascular diseases, sudden cardiac death

    Lab Website

    Principal Investigator

    Mark Anderson, M.D., Ph.D.

    Department

    Medicine

  • Cheryl Dennison Himmelfarb Lab

    Research in the Cheryl Dennison Lab aims to improve cardiovascular care for high-risk groups through multidisciplinary and health information technology-based methods. Our studies focus on reducing system and provider obstacles to implementing cardiovascular guidelines in various health care environments. Additional research interests include chronic illness management, quality of care, interdisciplinary teamwork and provider behavior.

    Research Areas: cardiovascular diseases, quality of care, information technology, health disparities

  • Eliseo Guallar Lab

    Research in the Eliseo Guallar Lab focuses on the epidemiology and prevention of cardiovascular diseases. We have a special interest in the roles played by mercury, arsenic, lead and cadmium in cardiovascular disease development. Our methodological interests include determining threshold effects in epidemiological studies and applying statistical methods to epidemiological problem-solving.

    Research Areas: epidemiology, cardiovascular diseases, heavy metals

    Principal Investigator

    Eliseo Guallar, M.D., M.P.H.

    Department

    Medicine

  • Elizabeth Selvin Lab

    The Elizabeth Selvin Lab examines the intersection of epidemiology, clinical policy and public health policy. One of our key goals is to use the findings of epidemiologic research to inform the screening, diagnosis and treatment of diabetes, cardiovascular disease and kidney disease. Much of our work looks at biomarkers and diagnostics related to diabetes and diabetes complications. Our findings — linking hemoglobin A1c (HbA1c) to diabetic complications and identifying the role of A1c in diabetes diagnosis — have influenced clinical practice guidelines.

    Research Areas: epidemiology, biomarkers, kidney diseases, obesity, diabetes, health care policy, cardiovascular diseases

    Principal Investigator

    Elizabeth Selvin, M.P.H., Ph.D.

    Department

    Medicine

  • Gail Daumit Lab

    Research in the Gail Daumit Lab is devoted to improving overall health and decreasing premature mortality for people with serious mental illnesses, such as schizophrenia and bipolar disorder. We have conducted observational studies to determine and convey the burden of physical health problems in this vulnerable population, and are currently leading a randomized trial funded by the National Heart, Lung, and Blood Institute to test a comprehensive cardiovascular risk reduction program in people with serious mental illness.

    Research Areas: mental health, schizophrenia, bipolar disorder, cardiovascular diseases

    Principal Investigator

    Gail Daumit, M.D., M.H.S.

    Department

    Medicine

  • J. Hunter Young Lab

    Research in the J. Hunter Young Lab focuses on the genetic epidemiology and physiology of cardiovascular disease and its risk factors, especially hypertension, diabetes and obesity. Current activities include an observational study of hypertension among African Americans; a genetic epidemiology study of worldwide cardiovascular disease susceptibility patterns; and several population-based observational studies of cardiovascular and renal disease. A recent focus group study found that changes in housing and city policies might lead to improved environmental health conditions for public housing residents.

    Research Areas: epidemiology, kidney diseases, obesity, hypertension, diabetes, genomics, physiology, cardiovascular diseases

    Principal Investigator

    Jeffery Young, M.D., M.H.S.

    Department

    Medicine

  • Jochen Steppan Lab

    Research in the Jochen Steppan Lab primarily focused on vascular stiffness related to aging. We are currently researching LOXL2 (lysine-oxidase-like-2), which might be intimately involved in the development or progression of vascular stiffness. We aim to better understand LOXL2's role in the vasculature and hope that this work leads to the characterization of a novel therapeutic target. This is important in the treatment of cardiovascular diseases in the aging population.

    Research Areas: aging, vascular stiffness, cardiovascular diseases

  • Lakshmi Santhanam Lab

    Investigators in the Lakshmi Santhanam Lab examine the fundamental mechanisms behind cardiovascular disease. They are particularly interested in better understanding how nitric oxide-mediated S-nitrosylation (a post-translational protein modification) impacts protein function and trafficking in the vasculature as well as how this relationship influences matrix remodeling and vascular stiffening.

    Research Areas: vasculature trafficking, protein trafficking, S-nitrosation, protein function, nitric oxide, matrix remodeling, vascular stiffness, cardiovascular diseases

  • Lee Bone Lab

    Research in the Lee Bone Lab uses community-based participatory approaches to promote health in underserved urban African-American populations. We conduct randomized clinical trials on cardiovascular disease, diabetes and cancer detection and control in order to test the success of community interventions. We focus in particular on making interventions sustainable and on implementing electronic education to improve communication.

    Research Areas: African Americans, cancer, diabetes, community outreach, cardiovascular diseases, community health education

    Principal Investigator

    Lee Bone, M.P.H.

    Department

    Medicine

  • Lewis Romer Lab

    Work in the Lewis Romer Lab focuses on the responses of vascular systems to disease and injury. Using cultured human endothelial cells and fibroblasts from mice that lack expression of the FAK- or Src-family kinases, we’re exploring several topics. These include the effect of inflammatory cytokine on cell adhesion to the extracellular matrix; the role of FAK signaling in inhibiting apoptosis; and the function of FAK- and Src-family kinases in cell-matrix interactions during adhesion and motility.

    Research Areas: microscopy, cellular biology, vascular biology, cardiovascular diseases

  • Lisa Yanek Lab

    Research in the Lisa Yanek Lab focuses on cardiovascular disease in families and risk factor modification. Recently, we conducted a study to determine the association of lean versus fat mass with fitness in healthy, overweight and obese African Americans from families with early-onset coronary disease.

    Research Areas: African Americans, cardiovascular diseases, risk factor modification

    Principal Investigator

    Lisa Yanek, M.P.H.

    Department

    Medicine

  • Mariana Lazo Lab

    The Mariana Lazo Lab studies the epidemiology of nonalcoholic fatty liver disease, diabetes and obesity in adults. We also study the effects of moderate alcohol consumption on liver and cardiovascular diseases.

    Research Areas: fatty liver disease, epidemiology, alcohol, alcohol use, obesity, nonalcoholic fatty liver disease, diabetes, cardiovascular diseases, liver diseases

    Lab Website

    Principal Investigator

    Mariana Lazo, M.D., Ph.D., Sc.M.

    Department

    Medicine

  • Maryam Jahromi Lab

    The Maryam Jahromi Lab researches infectious diseases such as influenza, tuberculosis, endocarditis, viral hemorrhagic fevers, brucellosis, Clostridium difficile and Crimean-Congo hemorrhagic fever. We are particularly interested in the impact of the influenza vaccine on systemic inflammation. Recent areas of focus include the relationship between influenza vaccination and cardiovascular outcomes, the emergence of Crimean-Congo hemorrhagic fever in Iran, and prospects for vaccines and therapies for Crimean-Congo hemorrhagic fever.

    Research Areas: vaccines, infectious disease, patient outcomes, inflammation, cardiovascular diseases, flu, Crimean-Congo hemorrhagic fever

    Principal Investigator

    Maryam Keshtkar Jahromi, M.D., M.P.H.

    Department

    Medicine

  • Michael Klag Lab

    The Michael Klag Lab focuses on the epidemiology and prevention of kidney disease, cardiovascular disease and hypertension. Our research determined that the U.S. was experiencing an epidemic of end-stage kidney disease, pinpointed the incidence of kidney disease and published scholarship on risk factors for kidney disease such as race, diabetes and socioeconomic status. Our Precursors Study has shown that serum cholesterol measured at age 22 years is a predictor for midlife cardiovascular disease, a finding that has influenced policy about cholesterol screening in young adults. We also research health behaviors that lead to hypertension and study how differences in these behaviors affect urban and non-urban populations.

    Research Areas: longitudinal data, kidney diseases, health behaviors, hypertension, cardiovascular diseases, cholesterol

    Principal Investigator

    Michael Klag, M.D., M.P.H.

    Department

    Medicine

  • Naresh Punjabi Lab

    The Naresh Punjabi Lab primarily studies sleep apnea, epidemiology, cardiovascular disease, insulin resistance and type 2 diabetes. Our current research focuses on the epidemiology of sleep apnea with a particular emphasis on associated sequelae, including insulin resistance, type 2 diabetes mellitus and cardiovascular disease. We have been part of the multi-center Sleep Heart Health Study, an epidemiological study on the longitudinal effects of sleep apnea on hypertension, cardiovascular disease and mortality. Our lab is examining the independent effects of intermittent hypoxia on various pathways to help elucidate the links between sleep apnea, insulin resistance and metabolic dysfunction.

    Research Areas: epidemiology, type 2 diabetes, insulin resistance, cardiovascular diseases, sleep apnea

    Principal Investigator

    Naresh Punjabi, M.D., Ph.D.

    Department

    Medicine

  • Nauder Faraday Lab

    The Nauder Faraday Lab investigates topics within perioperative genetic and molecular medicine. We explore thrombotic, bleeding and infectious surgical complications. Our goal is to uncover the molecular determinants of outcome in surgical patients, which will enable surgeons to better personalize a patient’s care in the perioperative period. Our team is funded by the National Institutes of Health to research platelet phenotypes, the pharmacogenomics of antiplatelet agents for preventing cardiovascular disease, and the genotypic determinants of aspirin response in high-risk families.

    Research Areas: cardiac surgery, molecular medicine, post-surgical outcomes, genomics, cardiovascular diseases, post-surgery complications

  • Paul Ladenson Lab

    The Paul Ladenson Lab studies the application of thyroid hormone analogues for treating cardiovascular disease; novel approaches to thyroid cancer diagnosis and management; and the health economic analyses related to thyroid patient care.

    Research Areas: thyroid cancer, cardiovascular diseases, endocrinology

    Principal Investigator

    Paul Ladenson, M.D.

    Department

    Medicine

  • Rita Kalyani Lab

    Research in the Rita Kalyani Lab examines the decreased physical functioning observed in patients with diabetes as they age. Through several ongoing epidemiological cohorts, we are investigating the association of high blood glucose and high insulin levels with accelerated muscle loss, and possible contributions to the physical disability observed in diabetes. We are currently involved in clinical studies that aim to understand the underlying mechanisms for these associations and to facilitate the development of novel strategies to prevent muscle loss and disability in people with diabetes.

    Research Areas: metabolism, insulin, diabetes, cardiovascular diseases, endocrinology, blood glucose

    Principal Investigator

    Rita Kalyani, M.D., M.H.S.

    Department

    Medicine

  • Sherita Golden Lab

    Research in the Sherita Golden Lab focuses on identifying endocrine risk factors associated with the development of diabetes and cardiovascular disease. We conduct our research by incorporating measures of hormonal function into the design of clinical trials of cardiovascular risk modification, observational studies of incident cardiovascular disease and diabetes, and studies evaluating diabetic complications.

    Research Areas: epidemiology, stress, hormones, diabetes, cardiovascular diseases, endocrinology

    Principal Investigator

    Sherita Golden, M.D., M.H.S.

    Department

    Medicine

  • Steven Beaudry Lab

    Research in the Steven Beaudry Lab aims to better understand the cellular and molecular mechanisms behind cardiovascular disease in pregnancy. Our goal is to develop more effective treatments and improve patient outcomes.

    Research Areas: cell biology, cardiovascular diseases, pregnancy, molecular biology

  • The Arking Lab

    The Arking Lab studies the genomics of complex human disease, with the primary goal of identifying and characterizing genetics variants that modify risk for human disease. The group has pioneered the use of genome-wide association studies (GWAS), which allow for an unbiased screen of virtually all common genetic variants in the genome. The lab is currently developing improved GWAS methodology, as well as exploring the integration of additional genome level data (RNA expression, DNA methylation, protein expression) to improve the power to identify specific genetic influences of disease.

    The Arking Lab is actively involved in researching:
    • autism, a childhood neuropsychiatric disorder
    • cardiovascular genomics, with a focus on electrophysiology and sudden cardiac death (SCD)
    • electrophysiology is the study of the flow of ions in biological tissues

    Dan E. Arking, PhD, is an associate professor at the McKusick-Nathans Institute of Genetic Medicine and Department of Medicine, D...ivision of Cardiology, Johns Hopkins University. view more

    Research Areas: autism, genetics, aging, cardiovascular diseases, sudden cardiac death

    Principal Investigator

    Dan Arking, Ph.D.

    Department

    Medicine

  • The Halushka Lab

    The Halushka laboratory is interested in the overarching question of expression localization in tissues. To address this, the laboratory has set out upon several avenues of discovery in the areas of microRNA expression, proteomics and tissue gene expression. Many of these queries relate to the cardiovascular field as Dr. Halushka is a cardiovascular pathologist. Come learn about the science being done in the laboratory.

    Research Areas: genomic sciences, cardiovascular, genomic technologies, cardiovascular diseases

    Lab Website

    Principal Investigator

    Marc Halushka, M.D., Ph.D.

    Department

    Pathology

  • Wei Dong Gao Lab

    Work in the Wei Dong Gao Lab primarily focuses on heart failure and defining molecular and cellular mechanisms of contractile dysfunction. We use molecular biology and proteomic techniques to investigate the changes that myofilament proteins undergo during heart failure and under drug therapy. We're working to determine the molecular nature of nitroxyl (HNO) modification of tropomyosin.

    Research Areas: heart disease, contractile dysfunction, heart failure, cardiovascular diseases, molecular biology

  1. 1