Skip Navigation

COVID-19: We are vaccinating patients ages 12+. Learn more:

Vaccines, Boosters & Additional Doses | Testing | Patient Care | Visitor Guidelines | Coronavirus | Self-Checker | Email Alerts

 

Philips Respironics issued a recall for some CPAP and BiLevel PAP devices and mechanical ventilators. Learn more.

Find a Research Lab

Research Lab Results for cardiomyopathy

Displaying 1 to 6 of 6 results
Results per page:
  • Anne Murphy Laboratory

    Principal Investigator:
    Anne Murphy, M.D.
    Medicine
    Pediatrics

    Anne Murphy’s laboratory studies cardiomyopathy and key proteins that are part of the contractile apparatus. The team is looking at how modifications to these proteins might affect various diseases and heart failure. She also investigates the role of genetics in pediatric heart failure associated with acute heart failure, which is sometimes attributed to myocarditis. Her laboratory has received grants from the American Heart Association, the National Institutes of Health and the Children’s Cardiomyopathy Foundation. Murphy received the Rowe Award for Cardiology Research from the Society for Pediatric Research and other awards. Her research on the molecular basis of myocardial stunning was named one of the top 10 research achievements for 1999 by the American Heart Association.

    Research Areas: pediatric cardiology, cardiomyopathy
  • Dara Kraitchman Laboratory

    Lab Website

    The Dara Kraitchman Laboratory focuses on non-invasive imaging and minimally invasive treatment of cardiovascular disease. Our laboratory is actively involved in developing new methods to image myocardial function and perfusion using MRI. Current research interests are aimed at determining the optimal timing and method of the administration of mesenchymal stem cells to regenerate infarcted myocardium using non-invasive MR fluoroscopic delivery and imaging. MRI and radiolabeling techniques include novel MR and radiotracer stem cell labeling methods to determine the location, quantity and biodistribution of stem cells after delivery as well as to noninvasively determine the efficacy of these therapies in acute myocardial infarction and peripheral arterial disease.

    Our other research focuses on the development of new animal models of human disease for noninvasive imaging studies and the development of promising new therapies in clinical trials for companion animals.

    Research Areas: imaging, cardioavascular, radiology, MRI, cardiomyopathy
  • Foster Lab

    Lab Website
    Principal Investigator:
    D. Brian Foster, M.Sc., Ph.D.
    Medicine

    The Foster Lab uses the tools of protein biochemistry and proteomics to tackle fundamental problems in the fields of cardiac preconditioning and heart failure. Protein networks are perturbed in heart disease in a manner that correlates only weakly with changes in mRNA transcripts. Moreover, proteomic techniques afford the systematic assessment of post-translational modifications that regulate the activity of proteins responsible for every aspect of heart function from electrical excitation to contraction and metabolism. Understanding the status of protein networks in the diseased state is, therefore, key to discovering new therapies.

    D. Brian Foster, Ph.D., is an assistant professor of medicine in the division of cardiology, and serves as Director of the Laboratory of Cardiovascular Biochemistry at the Johns Hopkins University School of Medicine.


    Research Areas: proteomics, protein biochemistry, heart failure, cardiology, cardiac preconditioning, cardiomyopathy
  • Gilotra Lab

    Principal Investigator:
    Nisha Gilotra, M.D.
    Medicine

    The main focus of Dr. Gilotra's research is understanding the pathophysiology and outcomes in inflammatory cardiomyopathies including myocarditis and sarcoidosis, as well as improvement of heart failure patient care through noninvasive hemodynamic monitoring and studying novel strategies to reduce heart failure hospitalizations. Additional investigations involve clinical research in advanced heart failure therapies including heart transplantation and mechanical circulatory support. Dr. Gilotra is the site Principal Investigator for the NIH/NHLBI funded Heart Failure Network trials.

    Research Areas: heart failure, cardiology, cardiomyopathy
  • Katherine Wilson Lab

    Principal Investigator:
    Katherine Wilson, Ph.D.
    Cell Biology

    Research in the Wilson Lab focuses on three components of nuclear lamina structure: lamins, LEM-domain proteins (emerin), and BAF.

    These three proteins all bind each other directly, and are collectively required to organize and regulate chromatin, efficiently segregate chromosomes and rebuild nuclear structure after mitosis. Mutations in one or more of these proteins cause a variety of diseases including Emery-Dreifuss muscular dystrophy (EDMD), cardiomyopathy, lipodystrophy and diabetes, and accelerated aging.

    We are examining emerin's role in mechanotransduction, how emerin and lamin A are regulated, and whether misregulation contributes to disease.

    Research Areas: cell biology, Emery-Dreifuss muscular dystrophy (EDMD), accelerated aging, chromatin, diabetes, genomics, emerin, nuclear lamina, lipodystrophy, cardiomyopathy
  • The Cihakova Lab

    Lab Website
    Principal Investigator:
    Daniela Cihakova, M.D., Ph.D.
    Pathology

    The Cihakova research laboratory is an immunology laboratory dedicated to the investigation of autoimmune diseases. Our most active research is focused on myocarditis and dilated cardiomyopathy. We expanded our interest in inflammatory heart diseases to include the study of immune mechanisms driving pericarditis and myocardial infarction. In addition, we are interested in the pathogenesis of a broad range of autoimmune diseases such as, Sjogren's syndrome, congenital complete heart block, and APECED (autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy). Through several collaborative projects we also investigate rheumatoid arthritis and the immune components of schizophrenia.

    Research Areas: schizophrenia, autoimmune diseases, myocardial infarction, cardiomyopathy
  1. 1
Create lab profile
Edit lab profile
back to top button