Find a Research Lab

Enter a research interest, principal investigator or keyword

Displaying 1 to 10 of 19 results for cardiology

Show: 10 · 20 · 50

  1. 1
  2. 2
  • Becker Lab

    The main focus of the Becker lab has been on the mechanisms and consequences of post-ischemic myocardial inflammation.

    Genomic control of platelet function:

    Aggregation of blood platelets initiates clotting in coronary arteries, the main cause of heart attacks. Our laboratory conducts experiments to understand how genes control platelet function. Through funding by the National Heart Lung and Blood Institute, we have performed candidate gene analysis, linkage studies, whole genome association studies, and now whole genome sequencing in about 2000 healthy subjects from families with early onset coronary artery disease. The subjects are siblings or offspring of an individual identified with coronary artery disease before age 60 in the GeneSTAR Research Program (Genetic Studies of Atherosclerosis Risk). We have identified a large number of common and rare genetic variants associated with platelet aggregation, and although some variants are located in genes known to be important in... the biology of platelet function, most are in non-protein coding regions of genes (introns) or in intergenic regions of the genome. To understand better how these variants influence platelet function, we created pluripotent stem cells from blood mononuclear cells in 257 genotyped GeneSTAR subjects and then transformed the stem cells to megakaryocytes, the source of platelets in the bone marrow. We have determined the entire transcriptome of these megakaryocytes to measure gene expression levels in an effort to functionally link genetic variation with platelet function. We are also interested in epigenetic effects which regulate the amount of gene transcription and resulting protein formation. We have done similar transcriptomic and proteomic studies in blood platelets as we have in stem cell-derived megakaryocytes.

    Our goal is to identify new therapeutic targets for drug development to control excessive platelet aggregation and reduce the risk of heart attack in susceptible individuals. We also hope to use the genetic information to predict who is at greatest risk for platelet aggregation or bleeding, and tailor treatment to effectively apply individualized precision medicine.

    The Becker laboratory also extends its cardiovascular work well beyond platelet function, as noted on the GeneSTAR Research Program website.
    view more

    Research Areas: post-ischemic myocardial inflammation, effects of mental stress on the heart, cardiology, genetics of premature coronary artery disease, myocardial infarction

    Lab Website

    Principal Investigator

    Lewis Becker, M.D.

    Department

    Medicine

  • Cammarato Lab

    The Cammarato Lab is located in the Division of Cardiology in the Department of Medicine at the Johns Hopkins University School of Medicine. We are interested in basic mechanisms of striated muscle biology.

    We employ an array of imaging techniques to study “structural physiology” of cardiac and skeletal muscle. Drosophila melanogaster, the fruit fly, expresses both forms of striated muscle and benefits greatly from powerful genetic tools. We investigate conserved myopathic (muscle disease) processes and perform hierarchical and integrative analysis of muscle function from the level of single molecules and macromolecular complexes through the level of the tissue itself.

    Anthony Ross Cammarato, MD, is an assistant professor of medicine in the Cardiology Department. He studies the identification and manipulation of age- and mutation-dependent modifiers of cardiac function, hierarchical modeling and imaging of contractile machinery, integrative analysis of striated muscle performan...ce and myopathic processes. view more

    Research Areas: muscle development, genetics, myopathic processes, striated muscle biology, muscle function, myopathy, muscle physiology

    Lab Website

    Principal Investigator

    Anthony Cammarato, Ph.D.

    Department

    Medicine

  • Cardiac Bioelectric Systems Laboratory

    The Cardiac Bioelectric Systems Laboratory research focuses on both the physiological and pathophysiological function of cardiac cells at a multicellular, syncytial level. We use cell culture models in a manner akin to mathematical models in which elements of the model can be designed, synthesized or controlled. Our traditional approach consists of cultured, confluent monolayers of cardiac cells that number in the tens of thousands to a million. These cell monolayers can be engineered in terms of their tissue architecture, cell type, protein expression and microenvironment, and have been used to study clinically relevant phenomena in the heart that include electrical stimulation, electrical propagation, arrhythmia and cell therapy.

    Research Areas: bioelectric systems, arrhythmia, cell therapy, cardiology

    Lab Website

    Principal Investigator

    Leslie Tung, Ph.D.

    Department

    Biomedical Engineering

  • Cardiology Bioengineering Laboratory

    The Cardiology Bioengineering Laboratory, located in the Johns Hopkins Hospital, focuses on the applications of advanced imaging techniques for arrhythmia management. The primary limitation of current fluoroscopy-guided techniques for ablation of cardiac arrhythmia is the inability to visualize soft tissues and 3-dimensional anatomic relationships.

    Implementation of alternative advanced modalities has the potential to improve complex ablation procedures by guiding catheter placement, visualizing abnormal scar tissue, reducing procedural time devoted to mapping, and eliminating patient and operator exposure to radiation.

    Active projects include
    • Physiological differences between isolated hearts in ventricular fibrillation and pulseless electrical activity
    • Successful ablation sites in ischemic ventricular tachycardia in a porcine model and the correlation to magnetic resonance imaging (MRI)
    • MRI-guided radiofrequency ablation of canine atrial fibrillation, and ...diagnosis and intervention for arrhythmias
    • Physiological and metabolic effects of interruptions in chest compressions during cardiopulmonary resuscitation

    Henry Halperin, MD, is co-director of the Johns Hopkins Imaging Institute of Excellence and a
    professor of medicine, radiology and biomedical engineering. Menekhem M. Zviman, PhD is the laboratory manager.
    view more

    Research Areas: magnetic resonance imaging, CPR models, cardiac mechanics, MRI-guided therapy, ischemic tachycardia, arrhythmia, cardiology, sudden cardiac death, cardiopulmonary resuscitation, computational modeling

    Lab Website

    Principal Investigator

    Henry Halperin, M.D.

    Department

    Medicine

  • CORE-320 Multicenter Trial Lab

    The central theme of the CORE-320 Multicenter Trial Lab’s research is to support the Coronary Artery Evaluation Using 320-Row Multidetector CT Angiography (CORE 320) study, a multi-center multinational diagnostic study with the primary objective to evaluate the diagnostic accuracy of 320-MDCT for detecting coronary artery luminal stenosis and corresponding myocardial perfusion deficits in patients with suspected CAD compared with the reference standard of conventional coronary angiography and SPECT myocardial perfusion imaging.

    Armin Arbab-Zadeh, MD, PhD, is an associate professor of medicine at the Johns Hopkins University School of Medicine and Director of Cardiac Computed Tomography in the Division of Cardiology at the Johns Hopkins Hospital in Baltimore.

    Research Areas: coronary/cardiac imaging, coronary risk prediction, heart attack prevention, cardiac computed tomography, coronary circulation and disease

    Research Areas: cardiac imaging, cardiac computing tomography, coronary risk prediction, heart attack prevention

    Principal Investigator

    Armin Arbab-Zadeh, M.D., M.P.H., Ph.D.

    Department

    Medicine

  • Foster Lab

    The Foster Lab uses the tools of protein biochemistry and proteomics to tackle fundamental problems in the fields of cardiac preconditioning and heart failure. Protein networks are perturbed in heart disease in a manner that correlates only weakly with changes in mRNA transcripts. Moreover, proteomic techniques afford the systematic assessment of post-translational modifications that regulate the activity of proteins responsible for every aspect of heart function from electrical excitation to contraction and metabolism. Understanding the status of protein networks in the diseased state is, therefore, key to discovering new therapies.

    D. Brian Foster, Ph.D., is an assistant professor of medicine in the division of cardiology, and serves as Director of the Laboratory of Cardiovascular Biochemistry at the Johns Hopkins University School of Medicine.


    Research Areas: proteomics, protein biochemistry, heart failure, cardiology, cardiac preconditioning, cardiomyopathy

    Lab Website

    Principal Investigator

    D. Brian Foster, M.Sc., Ph.D.

    Department

    Medicine

  • Gilotra Lab

    The main focus of Dr. Gilotra's research is understanding the pathophysiology and outcomes in inflammatory cardiomyopathies including myocarditis and sarcoidosis, as well as improvement of heart failure patient care through noninvasive hemodynamic monitoring and studying novel strategies to reduce heart failure hospitalizations. Additional investigations involve clinical research in advanced heart failure therapies including heart transplantation and mechanical circulatory support. Dr. Gilotra is the site Principal Investigator for the NIH/NHLBI funded Heart Failure Network trials.

    Research Areas: heart failure, cardiology, cardiomyopathy

    Principal Investigator

    Nisha Gilotra, M.D.

    Department

    Medicine

  • Institute for Computational Medicine

    The Institute for Computational Medicine's mission is to develop quantitative approaches for understanding the mechanisms, diagnosis and treatment of human disease through biological systems modeling, computational anatomy, and bioinformatics. Our disease focus areas include breast cancer, brain disease and heart disease.

    The institute builds on groundbreaking research at both the Johns Hopkins University Whiting School of Engineering and the School of Medicine.

    Research Areas: breast cancer, systems biology, brain, biomedical engineering, cardiology, bioinformatics, computational anatomy

  • Interventional Cardiology Research Group

    Our group is interested in a broad array of clinical and translational investigations spanning the evaluation of basic pathophysiology in patients undergoing cardiac procedures, development and evaluation of new therapeutic strategies, and improving patient selection and outcomes following interventional procedures. We are comprised of a core group of faculty and dedicated research nurses as well as fellows, residents, and students. Projects range from investigator-initiated single-center observational studies to industry-sponsored multicenter phase 3 randomized controlled trials. We have established a database of all patients who have undergone TAVR at Johns Hopkins, which is providing the basis for several retrospective analyses and will serve as the foundation for future studies of TAVR. We are also engaged in collaborative projects with other groups from the Department of Medicine and other Departments including Cardiac Surgery, Anesthesiology, Radiology, Psychiatry, and Biomedical... Engineering. Members of our group are actively involved with the Johns Hopkins Center for Bioengineering Innovation and Design (CBID) in the development of novel minimally-invasive cardiovascular devices. view more

    Research Areas: coronary CT angiography, PCI, bioprosthetic leaflet thrombosis, myocardial regeneration, TAVR

    Principal Investigator

    Jon Resar, M.D.

    Department

    Medicine

  • Joseph Mankowski Lab

    The Joseph Mankowski Lab studies the immunopathogenesis of HIV infection using the SIV/macaque model. Our researchers use a multidisciplinary approach to dissect the mechanism underlying HIV-induced nervous system and cardiac diseases. Additionally, we study the role that host genetics play in HIV-associated cognitive disorders.

    Research Areas: macaques, HIV, genomics, SIV, pathogenesis, cardiology, nervous system

    Principal Investigator

    Joseph L. Mankowski, D.V.M., Ph.D.

    Department

    Molecular and Comparative Pathobiology

  1. 1
  2. 2