Skip Navigation

Find a Research Lab

Research Lab Results for cardiac

Displaying 21 to 36 of 36 results
Results per page:
  • Lima Lab

    Lab Website

    The Lima Lab’s research is concentrated on the development and application of imaging and techn...ology to address scientific and clinical problems involving the heart and vascular system.

    Specifically, our research is focused on developing magnetic resonance imaging (MRI) contrast techniques to investigate microvascular function in patients and experimental animals with myocardial infarction; functional reserve secondary to dobutamine stimulation and myocardial viability assessed by sodium imaging; and cardiac MRI and computed tomography (CT) program development of techniques to characterize atherosclerosis in humans with cardiovascular or cerebrovascular disease.

    Current projects include:
    • The Coronary Artery Risk Development in Young Adults (CARDIA) Study
    • The MESA (Multi-Ethnic Study of Atherosclerosis) Study
    • The Coronary Artery Evaluation using 64-row Multidetector Computed Tomography Angiography (CORE64) Study

    Joao Lima, MD, is a professor of medicine, radiology and epidemiology at the Johns Hopkins School of Medicine.
    view more

    Research Areas: magnetic resonance, cerebrovascular, imaging, cardiovascular, cardiology, atherosclerosis, computed tomography, vascular, myocardial infarction
  • Mary Beth Brady Lab

    Lab Website

    Research in the Mary Beth Brady Lab focuses primarily on topics within the fields of anesthesio...logy, imaging and cardiology. Our work has explored transesophageal echocardiography simulation, echocardiography, cardiac and vascular-thoracic anesthesiology, and other areas within critical care medicine. A recent study involved obtaining 3-D images of the heart, which were then used to build computer programs to help cardiac surgeons improve their treatment of heart defects. view more

    Research Areas: critical care medicine, cardiac anesthesiology, imaging, transesophageal echocardiogram, anesthesiology, cardiology, echocardiography, vascular-thoracic anesthesiology
  • Nauder Faraday Lab

    Lab Website

    The Nauder Faraday Lab investigates topics within perioperative genetic and molecular medicine.... We explore thrombotic, bleeding and infectious surgical complications. Our goal is to uncover the molecular determinants of outcome in surgical patients, which will enable surgeons to better personalize a patient’s care in the perioperative period. Our team is funded by the National Institutes of Health to research platelet phenotypes, the pharmacogenomics of antiplatelet agents for preventing cardiovascular disease, and the genotypic determinants of aspirin response in high-risk families. view more

    Research Areas: cardiac surgery, molecular medicine, post-surgical outcomes, genomics, cardiovascular diseases, post-surgery complications
  • O'Rourke Lab

    Lab Website

    The O’Rourke Lab uses an integrated approach to study the biophysics and physiology of cardiac ...cells in normal and diseased states.

    Research in our lab has incorporated mitochondrial energetics, Ca2+ dynamics, and electrophysiology to provide tools for studying how defective function of one component of the cell can lead to catastrophic effects on whole cell and whole organ function. By understanding the links between Ca2+, electrical excitability and energy production, we hope to understand the cellular basis of cardiac arrhythmias, ischemia-reperfusion injury, and sudden death.

    We use state-of-the-art techniques, including single-channel and whole-cell patch clamp, microfluorimetry, conventional and two-photon fluorescence imaging, and molecular biology to study the structure and function of single proteins to the intact muscle. Experimental results are compared with simulations of computational models in order to understand the findings in the context of the system as a whole.

    Ongoing studies in our lab are focused on identifying the specific molecular targets modified by oxidative or ischemic stress and how they affect mitochondrial and whole heart function.

    The motivation for all of the work is to understand
    • how the molecular details of the heart cell work together to maintain function and
    • how the synchronization of the parts can go wrong

    Rational strategies can then be devised to correct dysfunction during the progression of disease through a comprehensive understanding of basic mechanisms.

    Brian O’Rourke, PhD, is a professor in the Division of Cardiology and Vice Chair of Basic and Translational Research, Department of Medicine, at the Johns Hopkins University.
    view more

    Research Areas: biophysics, ischemia-reperfusion injury, imaging, electrophysiology, cardiovascular, arrhythmia, physiology, sudden cardiac death, molecular biology, cardiac cells
  • Pediatric Cardiology Core Imaging Laboratory

    The lab’s assets include three MRI systems available for pediatric studies, cardiac imaging pro...cessing, cardiovascular imaging and therapeutic ultrasound. A robust echocardiogram program conducts 10,000 transthoracic echocardiograms and 1,300 fetal echocardiograms per year, and maintains a database with 10 years of data. view more

    Research Areas: cardiac imaging, pediatric cardiology
  • Post Lab

    Lab Website

    The Post Lab is involved in the Multi-Ethnic Study of Atherosclerosis (MESA), a collaborative s...tudy of the characteristics of subclinical cardiovascular disease (that is, disease detected non-invasively before it has produced clinical signs and symptoms) and the risk factors that predict progression to clinically overt cardiovascular disease or progression of the subclinical disease.

    As MESA researchers, we study a diverse, population-based sample of 6,814 asymptomatic men and women aged 45-84. Approximately 38 percent of the recruited participants are white, 28 percent African-American, 22 percent Hispanic, and 12 percent Asian, predominantly of Chinese descent.

    Participants were recruited from six field centers across the United States, including Johns Hopkins University. Each participant received an extensive physical exam to determine a number of conditions, including coronary calcification, ventricular mass and function, flow-mediated endothelial vasodilation, standard coronary risk factors, sociodemographic factors, lifestyle factors, and psychosocial factors.

    Selected repetition of subclinical disease measures and risk factors at follow-up visits have allowed study of the progression of disease. Participants are being followed for identification and characterization of cardiovascular disease events, including acute myocardial infarction and other forms of coronary heart disease (CHD), stroke, and congestive heart failure; for cardiovascular disease interventions; and for mortality.

    Wendy S. Post, MD, MS, is an associate faculty, Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, and a professor of medicine.
    view more

    Research Areas: coronary artery disease, cardiovascular, ethnicity, pathogenesis, atherosclerosis, sudden cardiac death
  • Rahul Koka Lab

    Lab Website

    Research in the Rahul Koka Lab focuses on pediatric airways, patient safety and health disparit...ies. Recent studies have focused on the relationship between socioeconomic status and perioperative outcomes and patient safety factors related to interoperative cardiac arrests. We also performed effects analyses of the maintenance and repair of anesthetic equipment in various medical environments. view more

    Research Areas: airway diseases, patient safety, pediatrics, health disparities
  • Raymond Koehler Lab

    Lab Website

    Research in the Raymond Koehler Lab explores cerebrovascular physiology and cerebral ischemic i...njury caused by stroke and cardiac arrest, using protein analysis, immunohistochemistry and histology. We also study ischemic preconditioning, neonatal hypoxic-ischemic encephalopathy and the mechanisms of abnormal cerebrovascular reactivity after ischemia. We 're examining ways to improve tissue oxygenation and seek to better understand the mechanisms that connect an increase in cerebral blood flow to neuronal activity. view more

    Research Areas: cardiac arrest, neurons, cerebrovascular, resuscitation, stroke, oxygen
  • Reid Thompson Laboratory

    Reid Thompson’s research interests include evaluation of ventricular function in patients with ...muscular dystrophy and Barth syndrome, and in patients who have completed chemotherapy. He also studies novel methods of teaching and diagnosing heart disease through cardiac auscultation. view more

    Research Areas: Barth syndrome, pediatric cardiology, muscular dystrophy
  • Retrovirus Laboratory

    Principal Investigator:
    Janice Clements, Ph.D.
    Medicine

    Research in the Retrovirus Laboratory focuses on the molecular virology and pathogenesis of len...tivirus infections. In particular, we study the simian immunodeficiency virus (SIV) to determine the molecular basis for the development of HIV CNS, pulmonary and cardiac disease.

    Research projects include studies of viral molecular genetics and host cell genes and proteins involved in the pathogenesis of disease. We are also interested in studies of lentivirus replication in macrophages and astrocytes and their role in the development of disease. These studies have led us to identify the viral genes that are important in neurovirulence of SIV and the development of CNS disease including NEF and the TM portion of ENV. The mechanisms of the action of these proteins in the CNS are complex and are under investigation. We have also developed a rapid, consistent SIV/macaque model in which we can test the ability of various antiviral and neuroprotective agents to reduce the severity of CNS and pulmonary disease.
    view more

    Research Areas: HIV, genomics, pulmonology, SIV, cardiology, lentivirus
  • The Arking Lab

    The Arking Lab studies the genomics of complex human disease, with the primary goal of identify...ing and characterizing genetics variants that modify risk for human disease. The group has pioneered the use of genome-wide association studies (GWAS), which allow for an unbiased screen of virtually all common genetic variants in the genome. The lab is currently developing improved GWAS methodology, as well as exploring the integration of additional genome level data (RNA expression, DNA methylation, protein expression) to improve the power to identify specific genetic influences of disease.

    The Arking Lab is actively involved in researching:
    • autism, a childhood neuropsychiatric disorder
    • cardiovascular genomics, with a focus on electrophysiology and sudden cardiac death (SCD)
    • electrophysiology is the study of the flow of ions in biological tissues

    Dan E. Arking, PhD, is an associate professor at the McKusick-Nathans Institute of Genetic Medicine and Department of Medicine, Division of Cardiology, Johns Hopkins University.
    view more

    Research Areas: autism, genetics, aging, cardiovascular diseases, sudden cardiac death
  • The Atlantic Cardiovascular Patient Outcomes Research Team - Atlantic C-PORT

    Our research is centered on the safety, efficacy and outcomes of PCI performed at hospitals wit...hout on-site cardiac surgery.

    Active projects:

    C-PORT Randomized Studies and Registries; New Jersey Angioplasty Demonstration Project; InCar-decision support tools for performance of PCI at hospitals without on-site cardiac surgery.

    For more information please visit Cport.org.
    view more

    Research Areas: cardiac surgery, cardiology
  • The Barouch Lab

    The Barouch Lab is focused on defining the peripheral cardiovascular effects of the adipocytoki...ne leptin, which is a key to the understanding of obesity-related cardiovascular disease. Interestingly, many of the hormonal abnormalities seen in obesity are mimicked in heart failure. The research program will enhance the understanding of metabolic signaling in the heart, including the effects of leptin, exercise, sex hormones, and downstream signaling pathways on metabolism and cardiovascular function.

    The lab also is working to determine the precise role of the “metabolic” beta-3 adrenergic receptor (ß3AR) in the heart and define the extent of its protective effect in obesity and in heart failure, including its role in maintaining nitric oxide synthase (NOS) coupling. Ultimately, this work will enable the exploration of a possible therapeutic role of ß3AR agonists and re-coupling of NOS in preventing adverse ventricular remodeling in obesity and in heart failure.

    Lili Barouch, MD, is an associate professor of medicine in the Division of Cardiology and a member of the Advanced Heart Failure and Cardiac Transplantation group at the Johns Hopkins University School of Medicine.
    view more

    Research Areas: cardiac remodeling, cardiac hypertrophy, obesity, cognitive heart failure
  • Weiss Lab

    Lab Website

    The Weiss Lab, which features a multi-disciplinary team at Johns Hopkins as well as at Cedars S...inai Medical Center in Los Angeles, is dedicated to identifying the most important clinical, genetic, structural, contractile and metabolic causes of sudden cardiac death as well as the means to reverse the underlying pathology and lower risk.

    Current projects include research into energy metabolism in human heart failure and creatine kinase metabolism in animal models of heart failure.

    Robert G. Weiss, MD, is professor of medicine, Radiology and Radiological Science, at the Johns Hopkins University.
    view more

    Research Areas: energy metabolism, creatine kinase metabolism, imaging, heart failure, aging, cardiology, sudden cardiac death
  • Wu Lab

    Dr. Wu leads a multi-disciplinary team with collaborators from the Bloomberg School of Public H...ealth, JHU Whiting School of Engineering, and JHU Krieger School of Arts and Sciences. She conducts ongoing investigations with the Multicenter AIDS Cohort Study and Women’s Inter-agency Health Study. Her lab’s goals are to develop, implement, and validate novel imaging-based metrics of cardiac structure and function to improve risk prediction and stratification at the individual patient-level.

    Research Focuses:

    Predictors of Sudden Cardiac Death by Magnetic Resonance Imaging
    Subclinical myocardial disease in people living with HIV
    Individualized risk prediction
    Cardiac structural and mechanical modeling
    view more

    Research Areas: AIDS, HIV, risk prediction, myocardial disease
  • Zambidis Laboratory

    Principal Investigator:
    Elias Zambidis, M.D., Ph.D.
    Pathology

    The Zambidis Labratory studies the formation of pluripotent stem cells and the subsequent hemat...opoietic, endothelial and cardiac differentiation, as well as the potential therapeutic uses of pluripotent stem cell-derived cells. view more

    Research Areas: stem cells, vasculogenesis, cardiogenesis, hematopoiesis, cancer stem cells, pluripotency
  1. 1
  2. 2
Create lab profile
Edit lab profile
back to top button