Research Lab Results for cardiac
-
Adamo Cardiac Immunology Lab
Lab WebsiteOver the last few decades, a growing body of evidence has shown that the immune system is intim...ately connected with cardiac development, function and adaptation to injury. However, there is still much to learn and currently there are no immunomodulatory treatments to prevent or treat heart dysfunction.
Research Areas: heart disease, immunology, cardiac function and dysfunction
The Adamo Lab aims to study applied immunology in the context of cardiac function and dysfunction, to both elucidate fundamental properties of the immune systems and to develop novel therapeutic options for the rapidly growing number of patients living with heart disease.
view more -
Adult Cardiac Catheterization Laboratory
Our group is interested in the evaluation of basic pathophysiology in patients undergoing cardi...ac procedures, development and evaluation of new therapeutic strategies, and improving patient selection and outcomes following interventional procedures. view more
Research Areas: cardiac catheterization, Acute Myocardial Infarction -
Ayse Gurses Lab
Work in the Ayse Gurses Lab examines several topics related to human factors, including methods... for improving patient safety in the cardiac operating room, care coordination, transitions of care and compliance of providers with evidence-based guidelines. Our team also has an interest in research that explores the working conditions of nurses. We collaborate on studies related to the development of geriatrics health service delivery at all levels of the health system. view more
Research Areas: patient safety, human factors, informatics, care coordination, evidence-based medicine, gerontology -
Cammarato Lab
Lab WebsiteThe Cammarato Lab is located in the Division of Cardiology in the Department of Medicine at the... Johns Hopkins University School of Medicine. We are interested in basic mechanisms of striated muscle biology.
Research Areas: muscle development, genetics, myopathic processes, striated muscle biology, muscle function, myopathy, muscle physiology
We employ an array of imaging techniques to study “structural physiology” of cardiac and skeletal muscle. Drosophila melanogaster, the fruit fly, expresses both forms of striated muscle and benefits greatly from powerful genetic tools. We investigate conserved myopathic (muscle disease) processes and perform hierarchical and integrative analysis of muscle function from the level of single molecules and macromolecular complexes through the level of the tissue itself.
Anthony Ross Cammarato, MD, is an assistant professor of medicine in the Cardiology Department. He studies the identification and manipulation of age- and mutation-dependent modifiers of cardiac function, hierarchical modeling and imaging of contractile machinery, integrative analysis of striated muscle performance and myopathic processes. view more -
Cardiac Surgery Research Lab
Lab WebsiteFounded in 1942 by surgeon Alfred Blalock and surgical technician Vivien Thomas, the Cardiac Su...rgery Research Lab at The Johns Hopkins Hospital serves not only to spearhead discovery and innovation in cardiothoracic surgery, but also to train future leaders in the field. Active areas of investigation include the development of novel, nanoparticle-based therapeutics to mitigate acute lung injury, avoid neurological injury during cardiac surgery, and improve organ preservation during heart and lung transplantation. The lab is also active in a variety of clinical research projects aimed at improving outcomes for our patients.
Research Areas: cardiac surgery, nanotechnology, cardiothoracic surgery, surgical models, heart transplant, lung transplant
Equally important, the lab plays a critical role in training residents for impactful careers in academic cardiothoracic surgery. Medical students, residents, and fellows receive hands-on simulation experiences to hone surgical skills outside of the operating room. The lab also serves as a training ground to develop research and investigation skills as trainees learn methods of advanced statistical analysis and academic writing. Special programs for undergraduates and medical students help develop their passion for cardiac surgery and surgical research, giving unique opportunities to young talent. view more -
Cardiology Bioengineering Laboratory
Lab WebsiteThe Cardiology Bioengineering Laboratory, located in the Johns Hopkins Hospital, focuses on the... applications of advanced imaging techniques for arrhythmia management. The primary limitation of current fluoroscopy-guided techniques for ablation of cardiac arrhythmia is the inability to visualize soft tissues and 3-dimensional anatomic relationships.
Research Areas: magnetic resonance imaging, CPR models, cardiac mechanics, MRI-guided therapy, ischemic tachycardia, arrhythmia, cardiology, sudden cardiac death, cardiopulmonary resuscitation, computational modeling
Implementation of alternative advanced modalities has the potential to improve complex ablation procedures by guiding catheter placement, visualizing abnormal scar tissue, reducing procedural time devoted to mapping, and eliminating patient and operator exposure to radiation.
Active projects include
• Physiological differences between isolated hearts in ventricular fibrillation and pulseless electrical activity
• Successful ablation sites in ischemic ventricular tachycardia in a porcine model and the correlation to magnetic resonance imaging (MRI)
• MRI-guided radiofrequency ablation of canine atrial fibrillation, and diagnosis and intervention for arrhythmias
• Physiological and metabolic effects of interruptions in chest compressions during cardiopulmonary resuscitation
Henry Halperin, MD, is co-director of the Johns Hopkins Imaging Institute of Excellence and a
professor of medicine, radiology and biomedical engineering. Menekhem M. Zviman, PhD is the laboratory manager.
view more -
Center for Research on Cardiac Intermediate Filaments
Lab WebsiteThe CRCIF was established to foster collaborative efforts aimed at elucidating the role of inte...rmediate filaments (IFs) in the heart. Intermediate filaments constitute a class of cytoskeletal proteins in metazoan cells, however, different from actin microfilaments and tubulin microtubules, their function in cardiac cells is poorly understood. Unique from the other two components of the cytoskeleton, IFs are formed by cell type-specific proteins. Desmin is the main component of the IFs in the cardiac myocytes. We measured the consistent induction of desmin post-translational modifications (PTMs, such as phosphorylation, etc.) in various clinical and experimental models of heart failure. Therefore, one of our main focuses is to determine the contribution of desmin PTMs to the development of heart failure in different animal and clinical models.
Research Areas: heart failure, intermediate filaments
Active Projects:
• Quantification of desmin PTM-forms in different forms of heart failure at the peptide level using mass spectrometry
• Functional assessment of the role of desmin PTMs in heart failure development using single site mutagenesis and biophysical methods
• Molecular characterization of desmin preamyloid oligomers using mass spectrometry, in vitro and in vivo imaging
• Assessment of the diagnostic and pharmacological value of desmin PTMs in heart failure development view more -
Chulan Kwon Laboratory
Lab WebsiteThe C. Kwon Lab studies the cellular and molecular mechanisms governing heart generation and re...generation.
Research Areas: stem cells, cell biology, heart regeneration, congenital heart disease, cardiovascular, molecular biology, cardiac cells
The limited regenerative capacity of the heart is a major factor in morbidity and mortality rates: Heart malformation is the most frequent form of human birth defects, and cardiovascular disease is the leading cause of death worldwide. Cardiovascular progenitor cells hold tremendous therapeutic potential due to their unique ability to expand and differentiate into various heart cell types.
Our laboratory seeks to understand the fundamental biology and regenerative potential of multi-potent cardiac progenitor cells – building blocks used to form the heart during fetal development — by deciphering the molecular and cellular mechanisms that control their induction, maintenance, and differentiation. We are also interested in elucidating the maturation event of heart muscle cells, an essential process to generate adult cardiomyocytes, which occurs after terminal differentiation of the progenitor cells. We believe this knowledge will contribute to our understanding of congenital and adult heart disease and be instrumental for stem cell-based heart regeneration.
We have developed several novel approaches to deconstruct the mechanisms, including the use of animal models and pluripotent stem cell systems. We expect this knowledge will help us better understand heart disease and will be instrumental for stem-cell-based disease modeling and interventions for of heart repair.
Dr. Chulan Kwon is an assistant professor of medicine at the Johns Hopkins University Heart and Vascular Institute. view more -
CORE-320 Multicenter Trial Lab
The central theme of the CORE-320 Multicenter Trial Lab’s research is to support the Coronary A...rtery Evaluation Using 320-Row Multidetector CT Angiography (CORE 320) study, a multi-center multinational diagnostic study with the primary objective to evaluate the diagnostic accuracy of 320-MDCT for detecting coronary artery luminal stenosis and corresponding myocardial perfusion deficits in patients with suspected CAD compared with the reference standard of conventional coronary angiography and SPECT myocardial perfusion imaging.
Research Areas: cardiac imaging, cardiac computing tomography, coronary risk prediction, heart attack prevention
Armin Arbab-Zadeh, MD, PhD, is an associate professor of medicine at the Johns Hopkins University School of Medicine and Director of Cardiac Computed Tomography in the Division of Cardiology at the Johns Hopkins Hospital in Baltimore.
Research Areas: coronary/cardiac imaging, coronary risk prediction, heart attack prevention, cardiac computed tomography, coronary circulation and disease
view more -
Donald Shaffner Lab
Work in the Donald Shaffner Lab investigates several topics within critical care medicine. Our ...team conducts research on the mechanisms involved in neurologic injury from global ischemia as a result of cardiac arrest and resuscitation. We also study neurologic outcomes of pediatric patients who experience cardiac arrest. view more
Research Areas: hyperthermia, critical care medicine, cardiac arrest, resuscitation, ischemia, pediatrics, neurology