Skip Navigation

Find a Research Lab

Research Lab Results for cancer

Displaying 81 to 96 of 96 results
Results per page:
  • Shawn Lupold Laboratory

    Lab Website
    Principal Investigator:
    Shawn Lupold, Ph.D.
    Urology

    The Shawn Lupold Laboratory studies the biology of urologic malignancies, like prostate cancer,... to create new experimental diagnostic, prognostic and therapeutic agents. view more

    Research Areas: prostate cancer, urologic cancers
  • Shyam Sundar Biswal Lab

    Principal Investigator:
    Shyam Biswal, Ph.D.
    Medicine

    xResearch in the Shyam Biswal Lab focuses on therapeutic resistance of cancer due to a gain-of-...function mutation in transcription factor Nrf2. Using patient-derived xenografts in humanized immunocompetent mice and GEM models, we aim to understand the mechanisms of oncogenic cooperation and metabolic adaptation in cancer cells. We’re also investigating the systemic and pulmonary effects of air pollution as well as the health effects of recent tobacco products, such as electronic cigarettes and water pipes. view more

    Research Areas: Nrf2, tobacco use, genetics, cancer, pulmonary medicine, environment, lung cancer
  • Solomon Snyder Laboratory

    Lab Website

    Information processing in the brain reflects communication among neurons via neurotransmitters.... The Solomon Snyder Laboratory studies diverse signaling systems including those of neurotransmitters and second messengers as well as the actions of drugs upon these processes. We are interested in atypical neurotransmitters such as nitric oxide (NO), carbon monoxide (CO), and the D-isomers of certain amino acids, specifically D-serine and D-aspartate. Our discoveries are leading to a better understanding of how certain drugs for Parkinson's disease and Hungtington's disease interact with cells and proteins. Understanding how other second messengers work is giving us insight into anti-cancer therapies. view more

    Research Areas: Huntington's disease, amino acids, neurotransmitters, brain, cancer, nitric oxide, drugs, carbon monoxide, Parkinson's disease, nervous system
  • Spinal Oncology Lab

    Lab Website

    The bony skeleton is one of the most common sites of metastatic spread of cancer and a signific...ant source of morbidity in cancer patients, causing pain and pathological fracture, impaired ambulatory ability and poorer quality of life.

    In our continuous investigation of the mechanism of metastasis in spine tumors and of developing animal models and treatments, our team seeks to understand how cancer cells metastasize to the bony spine.

    Our laboratory develops novel techniques to evaluate our animal models of metastatic spine disease.
    view more

    Research Areas: spine cancer, spine, cancer
  • Srinivasan Yegnasubramanian Lab

    Lab Website

    Dr. Yegnasubramanian directs a Laboratory of Cancer Molecular Genetics and Epigenetics at the S...idney Kimmel Comprehensive Cancer Center (SKCCC), and is also the Director of the SKCCC Next Generation Sequencing Center.


    Our lab research is focused on understanding the complex interplay between genetic and epigenetic alterations in carcinogenesis and disease progression, and to exploit this understanding in developing novel biomarkers for diagnosis and risk stratification as well as in identifying targets for therapeutic intervention.
    view more

    Research Areas: cancer therapies, biomarkers, genetics, cancer, epigenetics
  • Stivers Lab

    Lab Website

    The Stivers Lab is broadly interested in the biology of the RNA base uracil when it is present ...in DNA. Our work involves structural and biophysical studies of uracil recognition by DNA repair enzymes, the central role of uracil in adapative and innate immunity, and the function of uracil in antifolate and fluoropyrimidine chemotherapy. We use a wide breadth of structural, chemical, genetic and biophysical approaches that provide a fundamental understanding of molecular function. Our long-range goal is to use this understanding to design novel small molecules that alter biological pathways within a cellular environment. One approach we are developing is the high-throughput synthesis and screening of small molecule libraries directed at important targets in cancer and HIV-1 pathogenesis. view more

    Research Areas: biophysics, enzymes, cell biology, uracil, cancer, HIV, DNA, RNA
  • Sydney Dy Lab

    Lab Website
    Principal Investigator:
    Sydney Dy, M.D.
    Medicine

    The Sydney Dy Lab has conducted extensive research on quality of care, patient safety and decis...ion-making, with a focus on patients with cancer and other serious and terminal diseases. Our team seeks to improve health systems and services to optimize the use of technology and medication, particularly in end-of-life health care policy. Our research approach includes primary and quantitative data collection, quality measurement improvement, systematic literature reviews and analysis of secondary database. view more

    Research Areas: patient safety, palliative care, cancer, health care policy, pain, quality of care
  • Systems Biology Laboratory

    The Systems Biology Lab applies methods of multiscale modeling to problems of cancer and cardio...vascular disease, and examines the systems biology of angiogenesis, breast cancer and peripheral artery disease (PAD).

    Using coordinated computational and experimental approaches, the lab studies the mechanisms of breast cancer tumor growth and metastasis to find ways to inhibit those processes.

    We use bioinformatics to discover novel agents that affect angiogenesis and perform in vitro and in vivo experiments to test these predictions. In addition we study protein networks that determine processes of angiogenesis, arteriogenesis and inflammation in PAD. The lab also investigates drug repurposing for potential applications as stimulators of therapeutic angiogenesis, examines signal transduction pathways and builds 3D models of angiogenesis.

    The lab has discovered over a hundred novel anti-angiogenic peptides, and has undertaken in vitro and in vivo studies testing their activity under different conditions. We have investigated structure-activity relationship (SAR) doing point mutations and amino acid substitutions and constructed biomimetic peptides derived from their endogenous progenitors. They have demonstrated the efficacy of selected peptides in mouse models of breast, lung and brain cancers, and in age-related macular degeneration.

    view more

    Research Areas: peripheral artery disease, breast cancer, systems biology, computational biology, cancer, cardiovascular, age-related macular degeneration, bioinformatics, angiogenesis, microcirculation
  • The Pathak Lab

    Lab Website

    The Pathak lab is within the Division of Cancer Imaging Research in the Department of Radiology... and Radiological Science. We develop novel imaging methods, computational models and visualization tools to ‘make visible’ critical aspects of cancer, stroke and neurobiology. Our research broadly encompasses the following areas: Functional and Molecular Imaging; Clinical Biomarker Development; Image-based Systems Biology and Visualization and Computational Tools. We are dedicated to mentoring the next generation of imagers, biomedical engineers and visualizers. Additional information can be found at www.pathaklab.org or by emailing Dr. Pathak. view more

    Research Areas: microscopy, vasculature, tumors, systems biology, functional magnetic resonance imaging, 3D imaging, biomarkers, optical imaging, angiogenesis, cancer imaging
  • The Sfanos Lab

    Lab Website
    Principal Investigator:
    Karen Sfanos, Ph.D., M.S.
    Pathology

    The Sfanos Lab studies the cellular and molecular pathology of prostate disease at the Johns Ho...pkins University School of Medicine. We are specifically interested in agents that may lead to chronic inflammation in the prostate, such as bacterial infections and prostatic concretions called corpora amylacea. Our ongoing studies are aimed at understanding the influence of prostate infections and inflammation on prostate disease including prostate cancer and benign prostatic hyperplasia (BPH). The laboratory also focuses on the influence of the microbiome on prostate disease development, progression, and/or resistance to therapy. view more

    Research Areas: disease resistance, prostate cancer, prostate, benign prostatic hyperplasia, prostate disease, chronic inflammation
  • Venu Raman Research Lab

    The Raman laboratory is within the Division of Cancer Imaging Research in the Department of Rad...iology and Radiological Science. The focus of the laboratory is bench-to-bed side cancer research. We integrate molecular and cellular biology, developmental biology, cancer biology, molecular imaging techniques to study cancer formation and progression. Many of the projects in the lab investigate dysregulated genes in cancer and the translatability of this information to a clinical setting. One such project is to functionally decipher the role of a RNA helicase gene, DDX3, in the biogenesis of multiple cancer types such as breast, lung, brain, sarcoma, colorectal and prostate. Additionally, using a rational drug design approach, a small molecule inhibitor of DDX3 (RK-33) was synthesized and its potential for clinical translation is being investigated. view more

    Research Areas: breast cancer, cancer, in vitro findings, molecule inhibitors
  • Victor Velculescu Lab

    Lab Website

    The lab currently focuses on identifying genetic alterations in cancer affecting sensitivity an...d resistance to targeted therapies, and connecting such changes to key clinical characteristics and novel therapeutic approaches. We have recently developed methods that allow noninvasive characterization of cancer, including the PARE method that provided the first whole genome analysis of tumor DNA in the circulation of cancer patients. These analyses provide a window into real-time genomic analyses of cancer patients and provide new avenues for personalized diagnostic and therapeutic intervention. view more

    Research Areas: cancer, genomics, immunotherapy
  • William B. Isaacs Laboratory

    Lab Website
    Principal Investigator:
    William Isaacs, Ph.D.
    Urology

    Prostate cancer is the most commonly diagnosed malignancy in men in the United States, although... our understanding of the molecular basis for this disease remains incomplete. We are interested in characterizing consistent alterations in the structure and expression of the genome of human prostate cancer cells as a means of identifying genes critical in the pathways of prostatic carcinogenesis.

    We are focusing on somatic genomic alterations occurring in sporadic prostate cancers, as well as germline variations which confer increases in prostate cancer risk. Both genome wide and candidate gene approaches are being pursued, and cancer associated changes in gene expression analyses of normal and malignant prostate cells are being cataloged as a complementary approach in these efforts.

    It is anticipated that this work will assist in providing more effective methodologies to identify men at high risk for this disease, in general, and in particular, to identify new markers of prognostic and therapeutic significance that could lead to more effective management of this common disease.
    view more

    Research Areas: cell biology, prostate cancer, molecular genetics
  • William G. Nelson Laboratory

    Lab Website
    Principal Investigator:
    William Nelson, M.D., Ph.D.
    Oncology

    Normal and neoplastic cells respond to genome integrity threats in a variety of different ways.... Furthermore, the nature of these responses are critical both for cancer pathogenesis and for cancer treatment. DNA damaging agents activate several signal transduction pathways in damaged cells which trigger cell fate decisions such as proliferation, genomic repair, differentiation, and cell death. For normal cells, failure of a DNA damaging agent (i.e., a carcinogen) to activate processes culminating in DNA repair or in cell death might promote neoplastic transformation. For cancer cells, failure of a DNA damaging agent (i.e., an antineoplastic drug) to promote differentiation or cell death might undermine cancer treatment.

    Our laboratory has discovered the most common known somatic genome alteration in human prostatic carcinoma cells. The DNA lesion, hypermethylation of deoxycytidine nucleotides in the promoter of a carcinogen-defense enzyme gene, appears to result in inactivation of the gene and a resultant increased vulnerability of prostatic cells to carcinogens.
    Studies underway in the laboratory have been directed at characterizing the genomic abnormality further, and at developing methods to restore expression of epigenetically silenced genes and/or to augment expression of other carcinogen-defense enzymes in prostate cells as prostate cancer prevention strategies.

    Another major interest pursued in the laboratory is the role of chronic or recurrent inflammation as a cause of prostate cancer. Genetic studies of familial prostate cancer have identified defects in genes regulating host inflammatory responses to infections.
    A newly described prostate lesion, proliferative inflammatory atrophy (PIA), appears to be an early prostate cancer precursor. Current experimental approaches feature induction of chronic prostate inflammation in laboratory mice and rats, and monitoring the consequences on the development of PIA and prostate cancer.
    view more

    Research Areas: cellular biology, cancer, epigenetics, DNA
  • Youngjee Choi Lab

    Principal Investigator:
    Youngjee Choi, M.D.
    Medicine

    Research in the Youngjee Choi Lab focuses on ambulatory care, cancer survivorship, high-value c...are and medical education. view more

    Research Areas: medical education, ambulatory care, cancer survivors
  • Zaver M. Bhujwalla Lab – Cancer Imaging Research

    Lab Website

    Dr. Bhujwalla’s lab promotes preclinical and clinical multimodal imaging applications to unders...tand and effectively treat cancer. The lab’s work is dedicated to the applications of molecular imaging to understand cancer and the tumor environment. Significant research contributions include 1) developing ‘theranostic agents’ for image-guided targeting of cancer, including effective delivery of siRNA in combination with a prodrug enzyme 2) understanding the role of inflammation and cyclooxygenase-2 (COX-2) in cancer using molecular and functional imaging 3) developing noninvasive imaging techniques to detect COX-2 expressing in tumors 4) understanding the role of hypoxia and choline pathways to reduce the stem-like breast cancer cell burden in tumors 5) using molecular and functional imaging to understand the role of the tumor microenvironment including the extracellular matrix, hypoxia, vascularization, and choline phospholipid metabolism in prostate and breast cancer invasion and metastasis, with the ultimate goal of preventing cancer metastasis and 6) molecular and functional imaging characterization of cancer-induced cachexia to understand the cachexia-cascade and identify novel targets in the treatment of this condition. view more

    Research Areas: molecular and functional imaging, preventing cancer metastasis, metastasis, image-guided targeting of cancer, cancer-induced cachexia, cancer imaging
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
Create lab profile
Edit lab profile
back to top button