Skip Navigation

Find a Research Lab

Research Lab Results for cancer

Displaying 41 to 60 of 97 results
Results per page:
  • Gregory Kirk Lab

    Research in the Gregory Kirk Lab examines the natural history of viral infections — particularl...y HIV and hepatitis viruses — in the U.S. and globally. As part of the ALIVE (AIDS Linked to the Intravenous Experience) study, our research looks at a range of pathogenetic, clinical behavioral issues, with a special focus on non-AIDS-related outcomes of HIV, including cancer and liver and lung diseases. We use imaging and clinical, genetic, epigenetic and proteomic methods to identify and learn more about people at greatest risk for clinically relevant outcomes from HIV, hepatitis B and hepatitis C infections. Our long-term goal is to translate our findings into targeted interventions that help reduce the disease burden of these infections. view more

    Research Areas: global health, Hepatitis, Africa, AIDS, cancer, HIV, drugs, liver diseases
  • Head and Neck Cancer Clinical Trials and Tissue Bank

    The Johns Hopkins Head and Neck Cancer Tissue Bank enrolls patients and collects research speci...mens from Head and Neck Tumor patients, both cancerous and benign, with particular focus on Head and Neck Squamous Cell Cancer patients. It provides specimens to researchers both within the institution and outside. view more

    Research Areas: benign, malignant, cancer, tumor, head and neck tumors, Squamous cell carcinoma
  • Hsin-Chieh Yeh Lab

    Lab Website
    Principal Investigator:
    Hsin-Chieh Yeh, Ph.D.
    Medicine

    Work in the Hsin-Chieh Yeh Lab focuses on clinical trials and cohort studies of diabetes, obesi...ty and behavioral intervention, cancer and hypertension. Recent investigations have focused on novel risk factors and complications related to obesity and type 2 diabetes, particularly lung function, smoking and cancer. We recently co-led a randomized clinical trial of tailored dietary advice for consumption of dietary supplements to lower blood pressure and improve cardiovascular disease risk factors in hypertensive urban African Americans. view more

    Research Areas: epidemiology, African Americans, cancer, obesity, hypertension, diabetes, behavioral medicine
  • In-vivo Cellular and Molecular Imaging Center

    Lab Website

    The In-vivo Cellular and Molecular Imaging Center conducts multidisciplinary research on cellul...ar and molecular imaging related to cancer. We provide resources, such as consultation on biostatistics and bioinformatics and optical imaging and probe development, to understand and effectively treat cancer. Our molecular oncology experts consult on preclinical studies, use of human tissues, interpretation of data and molecular characterization of cells and tumor tissue. view more

    Research Areas: optical imaging, molecular characterization of tumor tissue, bioinformatics, molecular oncology, biostatistics, probe development, molecular characterization of cells, cancer imaging
  • J. Marie Hardwick Laboratory

    Lab Website

    Our research is focused on understanding the basic mechanisms of programmed cell death in disea...se pathogenesis. Billions of cells die per day in the human body. Like cell division and differentiation, cell death is also critical for normal development and maintenance of healthy tissues. Apoptosis and other forms of cell death are required for trimming excess, expired and damaged cells. Therefore, many genetically programmed cell suicide pathways have evolved to promote long-term survival of species from yeast to humans. Defective cell death programs cause disease states. Insufficient cell death underlies human cancer and autoimmune disease, while excessive cell death underlies human neurological disorders and aging. Of particular interest to our group are the mechanisms by which Bcl-2 family proteins and other factors regulate programmed cell death, particularly in the nervous system, in cancer and in virus infections. Interestingly, cell death regulators also regulate many other cellular processes prior to a death stimulus, including neuronal activity, mitochondrial dynamics and energetics. We study these unknown mechanisms.

    We have reported that many insults can trigger cells to activate a cellular death pathway (Nature, 361:739-742, 1993), that several viruses encode proteins to block attempted cell suicide (Proc. Natl. Acad. Sci. 94: 690-694, 1997), that cellular anti-death genes can alter the pathogenesis of virus infections (Nature Med. 5:832-835, 1999) and of genetic diseases (PNAS. 97:13312-7, 2000) reflective of many human disorders. We have shown that anti-apoptotic Bcl-2 family proteins can be converted into killer molecules (Science 278:1966-8, 1997), that Bcl-2 family proteins interact with regulators of caspases and regulators of cell cycle check point activation (Molecular Cell 6:31-40, 2000). In addition, Bcl-2 family proteins have normal physiological roles in regulating mitochondrial fission/fusion and mitochondrial energetics to facilitate neuronal activity in healthy brains.
    view more

    Research Areas: cell death
  • James Hamilton Lab

    Principal Investigator:
    James Hamilton, M.D.
    Medicine

    The main research interests of the James Hamilton Lab are the molecular pathogenesis of hepatoc...ellular carcinoma and the development of molecular markers to help diagnose and manage cancer of the liver. In addition, we are investigating biomarkers for early diagnosis, prognosis and response to various treatment modalities. Results of this study will provide a molecular classification of HCC and allow us to identify targets for chemoprevention and treatment. Specifically, we extract genomic DNA and total RNA from liver tissues and use this genetic material for methylation-specific PCR (MSP), cDNA microarray, microRNA microarray and genomic DNA methylation array experiments. view more

    Research Areas: cancer, molecular genetics, genomics, pathogenesis, liver diseases, hepatocellular carcinoma
  • Joel Pomerantz Laboratory

    The Pomerantz Laboratory studies the molecular machinery used by cells to interpret extracellul...ar signals and transduce them to the nucleus to affect changes in gene expression. The accurate response to extracellular signals results in a cell's decision to proliferate, differentiate or die, and it's critical for normal development and physiology. The dysregulation of this machinery underlies the unwarranted expansion or destruction of cell numbers that occurs in human diseases like cancer, autoimmunity, hyperinflammatory states and neurodegenerative disease.

    Current studies in the lab focus on signaling pathways that are important in innate immunity, adaptive immunity and cancer, with particular focus on pathways that regulate the activity of the pleiotropic transcription factor NF-kB.
    view more

    Research Areas: immunology, neurodegenerative disorders, cancer, autoimmune, hyperinflammatory states, molecular biology
  • John T. Isaacs Laboratory

    Lab Website
    Principal Investigator:
    John Isaacs, Ph.D.
    Oncology

    While there has been an explosion of knowledge about human carcinogenesis over the last 2 decad...es, unfortunately, this has not translated into the development of effective therapies for either preventing or treating the common human cancers. The goal of the Isaacs’ lab is to change this situation by translating theory into therapy for solid malignancies, particularly Prostate cancer. Presently, a series of drugs discovered in the Isaacs’ lab are undergoing clinical trials in patients with metastatic cancer.

    The ongoing drug discovery in the lab continues to focus upon developing agents to eliminate the cancer initiating stem cells within metastatic sites of cancer. To do this, a variety of bacterial and natural product toxins are being chemically modified to produce “prodrugs” whose cytotoxicity is selectively activated by proteases produced in high levels only by cancer cells or tumor associated blood vessel cells. In this way, these prodrugs can be given systemically to metastatic patients without un-acceptable toxicity to the host while being selectively activated to potent killing molecules within metastatic sites of cancer.

    Such a “Trojan Horse” approach is also being developed using allogeneic bone marrow derived Mesenchymal Stem cells which are genetically engineered to secrete “prodrugs” so that when they are infused into the patient, they selectively “home” to sites of cancers where the appropriate enzymatic activity is present to liberate the killing toxin sterilizing the cancer “neighborhood”.
    view more

    Research Areas: anti-cancer drugs, stem cell biology
  • Jon Russell Lab

    The Jon Russell lab focuses on thyroid and parathyroid pathology as well as improving patient s...afety and education using healthcare technology. Additional focuses include utilizing new technology to advance on the techniques of minimally invasive neck surgery. Current and previous efforts include the development of mobile and web-based applications to educate physicians and patients, utilizing ultrasound for vocal cord imaging, understanding the nuances of advanced thyroid cancer, and exploring the role of scarless thyroid surgery in a North American population. view more

    Research Areas: patient satisfaction, thyroid cancer, perioperative information delivery, health outcomes, otolaryngology, postoperative care, endocrinology
  • Jun O. Liu Laboratory

    Lab Website

    The Jun O. Liu Laboratory tests small molecules to see if they react in our bodies to find pote...ntial drugs to treat disease. We employ high-throughput screening to identify modulators of various cellular processes and pathways that have been implicated in human diseases from cancer to autoimmune diseases. Once biologically active inhibitors are identified, they will serve both as probes of the biological processes of interest and as leads for the development of new drugs for treating human diseases. Among the biological processes of interest are cancer cell growth and apoptosis, angiogenesis, calcium-dependent signaling pathways, eukaryotic transcription and translation. view more

    Research Areas: cancer, autoimmune, eukaryotic cells, drugs, cellular signaling, pharmacology, calcium-dependent signaling pathways, molecular biology, angiogenesis
  • Kathleen Gabrielson Laboratory

    Principal Investigator:
    Kathleen Gabrielson, D.V.M., Ph.D.
    Molecular and Comparative Pathobiology

    Research in the Kathleen Gabrielson Laboratory focuses on the signal transduction of cardiovasc...ular toxicities in vitro, in cardiomyocyte culture and in vivo using rodent models. Specifically, the research focuses on understanding the mechanisms of various cancer therapies that induce cardiac toxicities.

    Currently, we are testing prevention strategies for these toxicities by studying the cardiac effects of the anthracycline doxorubicin (adriamycin) and the immunotherapeutic agent, Herceptin, anti-erbB2. We are focusing on the signal transduction pathways in the heart that are modulated by anti-erbB2 treatment, which in turn, worsens doxorubicin toxicity. Thus, understanding the mechanisms behind the combined toxicity of doxorubicin and anti-erbB2 will pave the way for the design of strategies to reduce toxicity, identify patients at risk and potentially allow higher levels of this effective combination therapy to be used with an improved long-term survival in patients.
    view more

    Research Areas: cardiovascular toxicity, cancer, pathology, signal transduction
  • Kathryn Carson Lab

    Principal Investigator:
    Kathryn Carson, Sc.M.
    Medicine

    The Kathryn Carson Lab investigates ways to improve medical research, particularly in the areas... of brain and thyroid cancer, Alzheimer’s disease, atherosclerosis, hypertension, HIV and lupus. Our team seeks to help researchers optimize their studies through better study design, protocol and grant writing, data cleaning and analysis, and publication writing. We work with investigators from a wide range of departments through the Johns Hopkins Institute for Clinical and Translational Research. view more

    Research Areas: epidemiology, lupus, research methods, data analysis, cancer, hypertension, clinical trials, HIV, biostatistics, Alzheimer's disease
  • Kenneth J. Pienta Lab

    Lab Website
    Principal Investigator:
    Kenneth Pienta, M.D.
    Urology

    The Kenneth J. Pienta laboratory has championed the concept that cancer tumorigenesis and metas...tasis can best be understood utilizing the principles of Ecology. As a result, the Pienta laboratory is working to develop new treatments for cancer utilizing network disruption. view more

    Research Areas: biomarkers, cancer, metastasis
  • Kenneth W. Kinzler Laboratory

    Lab Website
    Principal Investigator:
    Kenneth Kinzler, Ph.D.
    Oncology

    Dr. Kinzler’s laboratory has focused on the genetics of human cancer. They have identified a va...riety of genetic mutations that underlie cancer, including mutations of the APC pathway that appear to initiate the majority of colorectal cancers and IDH1/2 mutations that underlying many gliomas. In addition, they have developed a variety of powerful tools for analysis of expression and genetic alterations in cancer.
    Most recently, they have pioneered integrated whole genome analyses of human cancers through expression, copy number, and mutational analyses of all the coding genes in several human cancer types including colorectal, breast, pancreatic and brain. The identification of genetic differences between normal and tumor tissues provide new therapeutic targets, new opportunities for the early diagnosis of cancer, and important insights into the neoplastic process.
    view more

    Research Areas: cancer, molecular genetics
  • Komatsu Lab

    Malfunction and malformation of blood vessels are associated with a broad range of medical cond...itions, including cancer, cardiovascular diseases, and neurological disorders. The ultimate goal of the Komatsu lab is to find a way to reverse the process of abnormal vessel formation and restore normal function to these vessels. In cancer, normalization of tumor blood vessels facilitates lymphocyte infiltration, potentiating anti-tumor immunity, and enhances the efficacy of immunotherapies as well as conventional cancer treatments. Normalization of regenerating blood vessels is also necessary for reestablishing blood flow to ischemic hearts and limbs, and preventing blindness caused by diabetic retinopathy or macular degeneration. Komatsu lab’s research is uncovering key molecular pathways important for the normalization of pathological vasculature. view more

    Research Areas: Tertiary lymphoid structure (TLS) in cancer, Drug targeting, High endothelial venules and their role in lymphocyte recruitment, Vascular normalization
  • Konig Lab

    Principal Investigator:
    Maximilian Konig, M.D.
    Medicine

    The Konig Lab focuses on chimeric T cell- and antibody-based strategies for the treatment of au...toimmune rheumatic diseases and cancer. A primary goal of the translational research program is the development of antigen-specific and personalized immunotherapies for autoimmune diseases, with the intent to achieve sustained disease remission and functional cure. The lab further aims to establish precision T cell-targeting therapies for the treatment of various autoimmune diseases. Applying these tools to immuno-oncology, the lab utilizes cellular engineering strategies to augment the cytotoxic killing of solid cancers by the immune system. view more

    Research Areas: antigen-specific immunotherapy, myositis, autoimmunity, citrullination, rheumatology, antiphospholipid antibody syndrome, chimeric antigen receptor (CAR) T cell therapy, immuno-oncology, autoimmune rheumatic diseases, rheumatoid arthritis
  • Kristine Glunde Lab

    Lab Website

    The Glunde lab is within the Division of Cancer Imaging Research in the Department of Radiology... and Radiological Science. The lab is developing mass spectrometry imaging as part of multimodal molecular imaging workflows to image and elucidate hypoxia-driven signaling pathways in breast cancer. They are working to further unravel the molecular basis of the aberrant choline phospholipid metabolism in cancer. The Glunde lab is developing novel optical imaging agents for multi-scale molecular imaging of lysosomes in breast tumors and discovering structural changes in Collagen I matrices and their role in breast cancer and metastasis. view more

    Research Areas: breast cancer, mass spectrometry, imaging, cancer, metastasis, metabolism, optical imaging
  • Lei Zheng Lab

    Lab Website
    Principal Investigator:
    Lei Zheng, M.D., Ph.D.
    Oncology
    Surgery

    Zheng’s research focuses on two R01-funded projects; first, the group has developed a pancreati...c cancer immunotherapy research program on a neoadjuvant therapy platform as well as a number of preclinical models of pancreatic cancer for developing innovative immunotherapy strategies. The group has applied the knowledge gained from pancreatic cancer immune-based therapies to the development of a colorectal cancer GVAX vaccine. Second, the group is aimed at understanding the mechanistic roles of the tumor microenvironment in cancer development and metastasis and identifying new targets for pancreatic cancer therapies by dissecting the tumor microenvironment of pancreatic cancer. view more

    Research Areas: cancer, pancreatic cancer, translational research, tumor microenvironment, immunotherapy
  • Linda Smith-Resar Lab

    Lab Website
    Principal Investigator:
    Linda Smith Resar, M.D.
    Medicine

    The Linda Smith-Resar Lab primarily investigates hematologic malignancy and molecular mechanism...s that lead to cancer as well as sickle cell anemia. Recent studies suggest that education is an important and effective component of a patient blood management program and that computerized provider order entry algorithms may serve to maintain compliance with evidence-based transfusion guidelines. Another recent study indicated that colonic epithelial cells undergo metabolic reprogramming during their evolution to colorectal cancer, and the distinct metabolites could serve as diagnostic tools or potential targets in therapy or primary prevention. view more

    Research Areas: blood disorders, sickle cell diseases, blood management programs, hematologic malignancies
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
Create lab profile
Edit lab profile
back to top button