Find a Research Lab

Enter a research interest, principal investigator or keyword

Displaying 1 to 8 of 8 results for cancer imaging

Show: 10 · 20 · 50

  1. 1
  • Dmitri Artemov Lab

    The Artemov lab is within the Division of Cancer Imaging Research in the Department of Radiology and Radiological Science. The lab focuses on 1) Use of advanced dynamic contrast enhanced-MRI and activated dual-contrast MRI to perform image-guided combination therapy of triple negative breast cancer and to assess therapeutic response. 2) Development of noninvasive MR markers of cell viability based on a dual-contrast technique that enables simultaneous tracking and monitoring of viability of transplanted stems cells in vivo. 3) Development of Tc-99m and Ga-68 angiogenic SPECT/PET tracers to image expression of VEGF receptors that are involved in tumor angiogenesis and can be important therapeutic targets. 4) Development of the concept of “click therapy” that combines advantages of multi-component targeting, bio-orthogonal conjugation and image guidance and preclinical validation in breast and prostate cancer models.

    Research Areas: VEGF receptors image expression, SPECT/PET tracers, tracking stem cells in vivo, triple-negative breast cancer, image-guided combination therapy, MRI, noninvasive MR markers, cancer imaging

  • In-vivo Cellular and Molecular Imaging Center

    The In-vivo Cellular and Molecular Imaging Center conducts multidisciplinary research on cellular and molecular imaging related to cancer. We provide resources, such as consultation on biostatistics and bioinformatics and optical imaging and probe development, to understand and effectively treat cancer. Our molecular oncology experts consult on preclinical studies, use of human tissues, interpretation of data and molecular characterization of cells and tumor tissue.

    Research Areas: optical imaging, molecular characterization of tumor tissue, bioinformatics, molecular oncology, biostatistics, probe development, molecular characterization of cells, cancer imaging

  • Kristine Glunde Lab

    The Glunde lab is within the Division of Cancer Imaging Research in the Department of Radiology and Radiological Science. The lab is developing mass spectrometry imaging as part of multimodal molecular imaging workflows to image and elucidate hypoxia-driven signaling pathways in breast cancer. They are working to further unravel the molecular basis of the aberrant choline phospholipid metabolism in cancer. The Glunde lab is developing novel optical imaging agents for multi-scale molecular imaging of lysosomes in breast tumors and discovering structural changes in Collagen I matrices and their role in breast cancer and metastasis.

    Research Areas: breast cancer, mass spectrometry, imaging, cancer, metastasis, metabolism, optical imaging

  • Marie-France Penet Lab

    The Penet lab is within the Division of Cancer Imaging Research in the Department of Radiology and Radiological Science. The lab research focuses on using multimodal imaging techniques to better understand the microenvironment and improve cancer early detection, especially in ovarian cancer. By combining MRI, MRS and optical imaging, we are studying the tumor microenvironment to understand the role of hypoxia, tumor vascularization, macromolecular transport and tumor metabolism in tumor progression, metastasis and ascites formation in orthotopic models of cancer. We also are studying the role of tumor-associated macrophages in tumor progression.

    Research Areas: tumor vascularization, prostate cancer, tumor metabolism, magnetic resonance spectroscopy, macromolecular transport, optical imaging, pancreatic cancer, MRI, tumor-associated macrophages, hypoxia, ovarian cancer, cancer-induced cachexia, cancer imaging

  • Michael A. Jacobs Lab

    The Jacobs lab is within the Division of Cancer Imaging Research in the Department of Radiology and Radiological Science. The lab translates radiological imaging (MRI/PET/CT) from research to the clinical setting. The Jacobs lab is establishing the use of multi-parametric/multinuclear/modality imaging to monitor treatment response in different cancers and co-developed a new metric for DWI/ADC mapping to discern treatment response. They are developing and implementing a new method for diagnosis of cancer using machine and deep learning to measure different types of lesions. The Jacobs lab is also developing novel segmentation of radiological images using non-linear dimensionality reduction. In addition, we are investigating methods to integrate Radiomics and Informatics and prognostic markers for disease. Other research areas include diagnostic medical physics and novel computer science applications. The medical physics research includes MRI quality assessments, X-ray, fluoroscopy, ultr...asound and applications to therapeutic medical physics. We are developing a residency using the Commission on Accreditation of Medical Physics Education Program in Diagnostic Medical Physics. view more

    Research Areas: treatment response, PET/CT, prostate, cancer, metastasis, pancreatic disease, liver diseases, cancer imaging

  • Samuel R. Denmeade Laboratory

    The main research goals of my laboratory are: (1) to identify and study the biology of novel cancer selective targets whose enzymatic function can be exploited for therapeutic and diagnostic purposes; (2) to develop methods to target novel agents for activiation by these cancer selective targets while avoiding or minimizing systemic toxicity; (3) to develop novel agents for imaging cancer sites at earliest stages. To accomplish these objectives the lab has originally focused on the development of prodrugs or protoxins that are inactive when given systemically via the blood and only become activated by tumor or tissue specific proteases present within sites of tumor. Using this approach, we are developing therapies targeted for activation by the serine proteases prostate-specific antigen (PSA), human glandular kallikrein 2 (hK2) and fibroblast activation protein (FAP) as well as the membrane carboxypeptidase prostate-specific membrane antigen (PSMA). One such approach developed in the l...ab consists of a potent bacterial protoxin that we have reengineered to be selectively activated by PSA within the Prostate. This PSA-activated toxin is currently being tested clinically as treatment for men with recurrent prostate cancer following radiation therapy. In a related approach, a novel peptide-cytotoxin prodrug candidate that is activated by PSMA has been identified and is this prodrug candidate is now entering early phase clinical development. In addition, we have also identified a series of potent inhibitors of PSA that are now under study as drug targeting and imaging agents to be used in the treatment and detection of prostate cancer.
    view more

    Research Areas: cancer therapies, prodrugs, cancer, protease inhibitors, protoxins, cancer imaging

  • The Pathak Lab

    The Pathak lab is within the Division of Cancer Imaging Research in the Department of Radiology and Radiological Science. We develop novel imaging methods, computational models and visualization tools to ‘make visible’ critical aspects of cancer, stroke and neurobiology. Our research broadly encompasses the following areas: Functional and Molecular Imaging; Clinical Biomarker Development; Image-based Systems Biology and Visualization and Computational Tools. We are dedicated to mentoring the next generation of imagers, biomedical engineers and visualizers. Additional information can be found at www.pathaklab.org or by emailing Dr. Pathak.

    Research Areas: microscopy, vasculature, tumors, systems biology, functional magnetic resonance imaging, 3D imaging, biomarkers, optical imaging, angiogenesis, cancer imaging

  • Zaver M. Bhujwalla Lab – Cancer Imaging Research

    Dr. Bhujwalla’s lab promotes preclinical and clinical multimodal imaging applications to understand and effectively treat cancer. The lab’s work is dedicated to the applications of molecular imaging to understand cancer and the tumor environment. Significant research contributions include 1) developing ‘theranostic agents’ for image-guided targeting of cancer, including effective delivery of siRNA in combination with a prodrug enzyme 2) understanding the role of inflammation and cyclooxygenase-2 (COX-2) in cancer using molecular and functional imaging 3) developing noninvasive imaging techniques to detect COX-2 expressing in tumors 4) understanding the role of hypoxia and choline pathways to reduce the stem-like breast cancer cell burden in tumors 5) using molecular and functional imaging to understand the role of the tumor microenvironment including the extracellular matrix, hypoxia, vascularization, and choline phospholipid metabolism in prostate and breast cancer invasion and metast...asis, with the ultimate goal of preventing cancer metastasis and 6) molecular and functional imaging characterization of cancer-induced cachexia to understand the cachexia-cascade and identify novel targets in the treatment of this condition. view more

    Research Areas: molecular and functional imaging, preventing cancer metastasis, metastasis, image-guided targeting of cancer, cancer-induced cachexia, cancer imaging

  1. 1