Research Lab Results for cancer
-
Ami Shah Lab
Lab WebsiteResearchers in the Ami Shah Lab study scleroderma and Raynaud’s phenomenon. We examine the rela...tionship between cancer and scleroderma, with a focus on how and if cancer causes scleroderma to develop in some patients. We are currently conducting clinical research to study ways to detect cardiopulmonary complications in patients with scleroderma, biological and imaging markers of Raynaud’s phenomenon, and drugs that improve aspects of scleroderma. view more
Research Areas: Raynaud's phenomenon, cancer, scleroderma, drugs, cardiovascular diseases -
Amit Pahwa Lab
The Amit Pahwa Lab conducts research on a variety of topics within internal medicine. Our most ...recent studies have explored misanalysis of urinalysis results, urinary fractional excretion indices in the evaluation of acute kidney injury and nocturnal enuresis as a risk factor for falls in older women. We also investigate cancer diagnostics and treatments. In this area, our recent research has included studying cutaneous shave biopsies for diagnosing primary colonic adenocarcinoma as well as growth inhibition and apoptosis in human brain tumor cell lines using selenium. view more
Research Areas: acute kidney injury, cancer, internal medicine, urology -
Andrew Feinberg Laboratory
Lab WebsiteThe Feinberg Laboratory studies the epigenetic basis of normal development and disease, includi...ng cancer, aging and neuropsychiatric illness. Early work from our group involved the discovery of altered DNA methylation in cancer as well as common epigenetic (methylation and imprinting) variants in the population that may be responsible for a significant population-attributable risk of cancer.
Research Areas: autism, cancer, epigenetics, schizophrenia, human development, aging, DNA, genomics, neuropsychiatric disease
Over the last few years, we have pioneered the field of epigenomics (i.e., epigenetics at a genome-scale level), founding the first NIH-supported NIH epigenome center in the country and developing many novel tools for molecular and statistical analysis. Current research examines the mechanisms of epigenetic modification, the epigenetic basis of cancer, the invention of new molecular, statistical, and epidemiological tools for genome-scale epigenetics and the epigenetic basis of neuropsychiatric disease, including schizophrenia and autism. view more -
Andrew Laboratory: Center for Cell Dynamics
Lab WebsiteResearchers in the Center for Cell Dynamics study spatially and temporally regulated molecular ...events in living cells, tissues and organisms. The team develops and applies innovative biosensors and imaging techniques to monitor dozens of critical signaling pathways in real time. The new tools help them investigate the fundamental cellular behaviors that underlie embryonic development, wound healing, cancer progression, and functions of the immune and nervous systems. view more
Research Areas: immunology, cancer, epithelial tube, nervous system, molecular biology -
Anne Marie Lennon Lab
Principal Investigator:
Anne Marie O'Broin Lennon, M.B.B.Ch., Ph.D.
Medicine
Oncology
Radiology and Radiological Science
SurgeryThe Lennon Lab does clinical and translational research on endoscopic ultrasound, esophageal ca...ncer, gastric cancer, gastroenterology, pancreatic cancer, pancreatic cysts, therapeutic endoscopy, Von Hippel-Lindau (VHL)
Research Areas: Von Hippel-Lindau (VHL), gastroenterology, pancreatic cancer, Endoscopic Ultrasound, Esophageal Cancer, Pancreatic Cysts, Therapeutic Endoscopy, Gastric Cancer
view more -
Antony Rosen Lab
Research in the Antony Rosen Lab investigates the mechanisms shared by the autoimmune rheumatic... diseases such as lupus, myositis, rheumatoid arthritis, scleroderma and SjogrenÕs syndrome. We focus on the fate of autoantigens in target cells during various circumstances, such as viral infection, relevant immune effector pathways and exposure to ultraviolet radiation. Our recent research has sought to define the traits of autoantibodies that enable them to induce cellular or molecular dysfunction. We also work to better understand the mechanisms that form the striking connections between autoimmunity and cancer. view more
Research Areas: myositis, lupus, rheumatology, Sjogren's syndrome, scleroderma, autoimmune rheumatic diseases, rheumatoid arthritis -
Brain Cancer Biology and Therapy Lab
Lab WebsiteThe goal of the Johns Hopkins Brain Cancer Biology and Therapy Laboratory is to locate the gene...tic and genomic changes that lead to brain cancer. These molecular changes are evaluated for their potential as therapeutic targets and are often mutated genes, or genes that are over-expressed during the development of a brain cancer. The brain cancers that the Riggins Laboratory studies are medulloblastomas and glioblastomas. Medulloblastomas are the most common malignant brain tumor for children and glioblastomas are the most common malignant brain tumor for adults. Both tumors are difficult to treat, and new therapies are urgently needed for these cancers. Our laboratory uses large-scale genomic approaches to locate and analyze the genes that are mutated during brain cancer development. The technologies we now employ are capable of searching nearly all of a cancer genome for molecular alterations that can lead to cancer. The new molecular targets for cancer therapy are first located by large scale gene expression analysis, whole-genome scans for altered gene copy number and high throughput sequence analysis of cancer genomes. The alterations we find are then studied in-depth to determine how they contribute to the development of cancer, whether it is promoting tumor growth, enhancing the ability for the cancer to invade into normal tissue, or preventing the various fail-safe mechanisms programmed into our cells. view more
Research Areas: brain cancer -
Brain Tumor Cancer Genetics Lab
Lab WebsiteThe lab explores the genetic underpinnings that drive the pathogenesis of a variety of primary ...central nervous system neoplasms. We are interested in exploiting genetic changes for both diagnostic and therapeutic purposes. Our lab is currently working on understanding the extreme responders and extreme clinical phenotypes of brain and spinal cord tumors to identify factors that may modulate responses to therapy. view more
Research Areas: brain tumor genetics, brain tumor -
Brennen Lab
The Brennen laboratory takes a rigorous, multi-disciplinary, team-based approach towards develo...ping innovative therapeutic and prognostic strategies for prostate cancer with an emphasis on exploiting vulnerabilities within the tumor microenvironment towards this goal. To accomplish this goal, we are strategically pursuing novel therapeutic platforms, including stromal-targeted prodrugs, protoxins, and radiolabeled antibodies, in addition to cell-based therapy and drug delivery; all of which are designed to reduce toxicity to peripheral non-target tissue (i.e. side effects) while maximizing anti-tumor efficacy (i.e. therapeutic benefit). Currently, many of these strategies are focused on overcoming stromal barriers to anti-tumor immune responses such that men suffering from prostate cancer can share in the immense, revolutionary power of immunotherapy that is transforming care for many with advanced disease in other tumor types previously thought to be unmanageable using conventional approaches. Unfortunately, prostate cancer has largely proven refractory to these powerful approaches thus far and requires novel mono- or combinatorial treatment strategies to unleash the full potential of the immune system and generate personalized anti-tumor responses with the capability of producing long-term durable responses or even cures in these men. view more
Research Areas: prostate cancer, prodrugs, cell-based therapy, tumor microenvironment -
Center for Nanomedicine
Lab WebsiteThe Center for Nanomedicine engineers drug and gene delivery technologies that have significant... implications for the prevention, treatment and cure of many major diseases facing the world today. Specifically, we are focusing on the eye, central nervous system, respiratory system, women's health, gastrointestinal system, cancer, and inflammation.
Research Areas: central nervous system, respiratory system, nanotechnology, cancer, drugs, women's health, inflammation, eye, gastrointestinal
We are a unique translational nanotechnology effort located that brings together engineers, scientists and clinicians working under one roof on translation of novel drug and gene delivery technologies view more