Find a Research Lab

Enter a research interest, principal investigator or keyword

Displaying 61 to 80 of 84 results for brain

Show: 10 · 20 · 50

  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  • Psychiatric Neuroimaging

    Psychiatric Neuroimaging (PNI) is active in neuropsychiatric research using imaging methods such as MRI, fMRI, PET and DTI to understand the mechanisms and brain networks underlying human cognition. PNI faculty have published hundreds of papers on a variety of brain disorders which include but are not limited to Alzheimer's disease, Parkinson's disease, bipolar disorder, and eating disorders. Faculty in the division have been awarded numerous peer-reviewed grants by the National Institutes of Health, foundations and other funding organizations.

    Research Areas: brain disorders

  • Raul Chavez-Valdez Lab

    Dr. Raul Chavez-Valdez is an assistant professor in the Department of Pediatrics with great interest in the mechanisms of delayed injury and repair/regeneration in the developing neonatal brain following injury, specifically following hypoxic-ischemic encephalopathy (birth asphyxia). He collaborates with Dr. Frances Northington (Pediatrics) and Dr. Lee Martin (Pathology/Neuroscience) in unveiling the importance of programmed necrosis in the setting of brain injury induced by birth asphyxia. He is especially interested in the role of brain derived neurotrophic factor and neurotrophin-4 following birth asphyxia and the changes that may explain the suspected excitatory/ inhibitory (E/I) imbalance particularly in the hippocampus. His work is highly translational since delayed hippocampal injury due to E/I imbalance may explain memory deficits observed despite therapeutic hypothermia in neonates suffering birth asphyxia. All of these aspects of developmental neuroplasticity are the base of ...his Career Development Award (NIH/NINDS-K08 award) and applications to other agencies. Additionally, he is part of multiple clinical efforts as part of the Neuroscience Intensive Care Nursery (NICN). He has been a Sutland-Pakula Endowed Fellow of Neonatal Research since September 2013. view more

    Research Areas: critical care medicine, neonatal, neuroscience, pediatrics, intensive care, pediatric critical care medicine

    Lab Website

    Principal Investigator

    Raul Chavez Valdez, M.D.

    Department

    Pediatrics

  • Rebecca Riggs Lab

    Research in the Rebecca Riggs Lab focuses on developing safer, less-invasive ways to detect traumatic brain injury and abusive head trauma. We are exploring the use of bedside ophthalmic ultrasonography to find retinal lesions associated with abusive head trauma, as well as investigating the use of other types of sonography to monitor intracranial hypertension. Such tools would be safer than current methods, which are often invasive or emit high levels of radiation. Additionally, portable monitors could be used outside of the hospital, in settings such as football games, to better and more quickly diagnose concussions.

    Research Areas: traumatic brain injuries, patient safety, sonography, hypertension

  • Robert Stevens Lab

    The Robert Stevens Lab seeks to generate a comprehensive anatomical and functional map of neural injury and repair following incidents such as trauma, stroke, anoxia and sepsis. Several projects have evaluated the relationship between critical illness and central or peripheral nervous system dysfunction. Ongoing projects deploy quantitative brain mapping to probe recovery of consciousness and cognitive function in patients who have experienced acute neurologic insults from trauma, stroke, cardiac arrest and sepsis.

    Research Areas: anoxia, stroke, trauma, sepsis, neural injury

    Lab Website

    Principal Investigator

    Robert Stevens, M.D.

    Department

    Medicine

  • Ronald Schnaar Lab

    The Ronald Schnaar Lab is involved in the rapidly expanding field of glycobiology, which studies cell surface glycans, lectins, and their roles in cell physiology.

    Current projects in our lab study include (1) Glycans and glycan-binding proteins in inflammatory lung diseases, (2) Ganglioside function in the brain, and (3) HIV-Tat and HIV-associated neurocognitive disorders.

    Research Areas: cell physiology, HIV, neurocognitive disorders, glycobiology

  • S.C.O.R.E. Lab

    The mission of the Stroke Cognitive Outcomes and Recovery (S.C.O.R.E.) Lab is to enhance knowledge of brain mechanisms that allow people recover language, empathy, and other cognitive and communicative functions after stroke, and to improve ways to facilitate recovery of these functions after stroke. We also seek to improve the understanding of neurobiology of primary progressive aphasia., and how to enhance communication in people with this group of clinical syndromes.

    Research Areas: cerebrovascular, cognitive neuroscience, dementia

    Lab Website

    Principal Investigator

    Argye Hillis, M.D.

    Department

    Neurology

  • Sesaki Lab

    The Sesaki Lab is interested in the molecular mechanisms and physiological roles of mitochondrial fusion. Mitochondria are highly dynamic and control their morphology by a balance of fusion and fission. The regulation of membrane fusion and fission generates a striking diversity of mitochondrial shapes, ranging from numerous small spheres in hepatocytes to long branched tubules in myotubes. In addition to shape and number, mitochondrial fusion is critical for normal organelle function.

    Research Areas: brain, mitochondrial fusion, mitochondria, molecular biology

    Lab Website

    Principal Investigator

    Hiromi Sesaki, Ph.D.

    Department

    Cell Biology

  • Seth Margolis Laboratory

    The Seth Margolis Laboratory studies the signaling pathways that regulate synapse formation during normal brain development to try to understand how, when these pathways go awry, human cognitive disorders develop.

    We use Ephexin5 to study the molecular pathways that regulate restriction of excitatory synapse formation and their relevance to the pathophysiology of Angelman syndrome.

    Research Areas: cognition, Angelman syndrome, human development, cellular signaling, synapse formation

    Principal Investigator

    Seth Margolis, Ph.D.

    Department

    Biological Chemistry

  • Solomon Snyder Laboratory

    Information processing in the brain reflects communication among neurons via neurotransmitters. The Solomon Snyder Laboratory studies diverse signaling systems including those of neurotransmitters and second messengers as well as the actions of drugs upon these processes. We are interested in atypical neurotransmitters such as nitric oxide (NO), carbon monoxide (CO), and the D-isomers of certain amino acids, specifically D-serine and D-aspartate. Our discoveries are leading to a better understanding of how certain drugs for Parkinson's disease and Hungtington's disease interact with cells and proteins. Understanding how other second messengers work is giving us insight into anti-cancer therapies.

    Research Areas: Huntington's disease, amino acids, neurotransmitters, brain, cancer, nitric oxide, drugs, carbon monoxide, Parkinson's disease, nervous system

  • Sujatha Kannan Lab

    The Sujatha Kannan Lab works to develop therapeutic strategies for preventing perinatal brain injuries from occurring during development. We use a unique combination of nanotechnology, animal model development and in vivo imaging to better understand the mechanism and progression of cellular and metabolic conditions that lead to perinatal brain injury, with a focus on autism and cerebral palsy.

    Research Areas: autism, imaging, nanotechnology, cerebral palsy, perinatal brain injuries

  • Supendymoma and Ependymoma Research Center

    The Johns Hopkins comprehensive Subependymoma and Ependymoma Research Center divideS its efforts into three areas: basic science, translational research and clinical practice. Each division works separately but shares findings and resources openly with each other and our collaborators. The goal of our united efforts is to optimize current treatments to affect the care received by patients with subependymomas and ependymomas. Also, our clinical, translational and basic science teams work to develop novel therapies to improve and extend the lives of those with these rare tumors.

    Research Areas: brain cancer

    Lab Website

    Principal Investigator

    Henry Brem, M.D.

    Department

    Neurosurgery

  • Systems Biology Laboratory

    The Systems Biology Lab applies methods of multiscale modeling to problems of cancer and cardiovascular disease, and examines the systems biology of angiogenesis, breast cancer and peripheral artery disease (PAD).

    Using coordinated computational and experimental approaches, the lab studies the mechanisms of breast cancer tumor growth and metastasis to find ways to inhibit those processes.

    We use bioinformatics to discover novel agents that affect angiogenesis and perform in vitro and in vivo experiments to test these predictions. In addition we study protein networks that determine processes of angiogenesis, arteriogenesis and inflammation in PAD. The lab also investigates drug repurposing for potential applications as stimulators of therapeutic angiogenesis, examines signal transduction pathways and builds 3D models of angiogenesis.

    The lab has discovered over a hundred novel anti-angiogenic peptides, and has undertaken in vitro and in vivo studies testing their activity unde...r different conditions. We have investigated structure-activity relationship (SAR) doing point mutations and amino acid substitutions and constructed biomimetic peptides derived from their endogenous progenitors. They have demonstrated the efficacy of selected peptides in mouse models of breast, lung and brain cancers, and in age-related macular degeneration.

    view less

    Research Areas: peripheral artery disease, breast cancer, systems biology, computational biology, cancer, cardiovascular, age-related macular degeneration, bioinformatics, angiogenesis, microcirculation

    Principal Investigator

    Aleksander Popel, Ph.D.

    Department

    Biomedical Engineering

  • Systems Neurobiology Laboratory

    The Systems neurobiology Laboratory is a group of laboratories that all study various aspects of neurobiology. These laboratories include: (1) computational neurobiology Laboratory: The goal of their research is to build bridges between brain levels from the biophysical properties of synapses to the function of neural systems. (2) computational Principles of Natural Sensory Processing: Research in this lab focuses on the computational principles of how the brain processes information. (3) Laboratory for Cognitive neuroscience: This laboratory studies the neural and genetic underpinnings of language and cognition. (4) Sloan-Swartz Center for Theoretical neurobiology: The goal of this laboratory is develop a theoretical infrastructure for modern experimental neurobiology. (5) Organization and development of visual cortex: This laboratory is studying the organization and function of neural circuits in the visual cortex to understand how specific neural components enable visual perception ...and to elucidate the basic neural mechanisms that underlie cortical function. (6) Neural mechanism of selective visual attention: This laboratory studies the neural mechanisms of selective visual attention at the level of the individual neuron and cortical circuit, and relates these findings to perception and conscious awareness. (7) Neural basis of vision: This laboratory studies how sensory signals in the brain become integrated to form neuronal representation of the objects that people see. view less

    Research Areas: cognition, systems biology, brain, vision, neuroscience, perception

  • The Bigos Lab

    The Bigos Lab focuses on a Precision Medicine approach to the treatment of psychiatric illness. In addition, this lab employs functional neuroimaging and genetics as biomarkers in neuropsychiatric drug development. A recent study used functional MRI to test the neural effects of a drug with the potential to treat cognitive dysfunction in schizophrenia. Other studies aim to identify patient-specific variables including sex, race, and genetics that impact drug clearance and clinical response to better select and dose antipsychotics and antidepressants.

    Research Areas: cognition, brain disorders, schizophrenia, mental illness, fMRI, pharmacogenomics, neuroimaging

  • The Functional Neurosurgery Lab

    The studies of the Functional Neurosurgery Lab currently test whether neural activity related to the experimental vigilance and conditioned expectation toward pain can be described by interrelated networks in the brain. These two psychological dimensions play an important role in chronic pain syndromes, but their neuroscience is poorly understood. Our studies of spike trains and LFPs utilize an anatomically focused platform with high temporal resolution, which complements fMRI studies surveying the whole brain at lower resolution. This platform to analyze the oscillatory power of structures in the brain, and functional connections (interactions and synchrony and causal interactions) between these structures based upon signals recorded directly from the waking human brain during surgery for epilepsy and movement disorders, e.g. tremor. Our studies have demonstrated that behaviors related to vigilance and expectation are related to electrical signals from the cortex and subcortical struc...tures.

    These projects are based upon the combined expertise of Dr. Nathan Crone in recordings and clinical management of the patients studied; Dr. Anna Korzeniewska in the analyses of signals recorded from the brain; Drs. Claudia Campbell, Luana Colloca and Rick Gracely in the clinical psychology and cognitive neurology of the expectation of pain and chronic pain; Dr. Joel Greenspan in quantitative sensory testing; and Dr. Martin Lindquist in the statistical techniques. Dr. Lenz has conducted studies of this type for more than thirty years with continuous NIH funding.
    view less

    Research Areas: neurosurgery, epilepsy, movement disorders, pain

    Lab Website

    Principal Investigator

    Fred Lenz, M.D.

    Department

    Neurosurgery

  • The Koliatsos Lab

    Founded in the late 1980s, our Lab has been exploring the fundamental mechanisms of neural responses to traumatic and degenerative signals as well as mechanisms of neural repair. Our current interests include: traumatic brain injury and models; mechanisms and treatments of traumatic axonopathies; molecular neuropathology of traumatic brain injury; induced pluripotent stem cells as models of disease.

    Research Areas: traumatic brain injuries, pluripotent stem cells, molecular neuropathology, traumatic axonopathies

    Lab Website

    Principal Investigator

    Vassilis Koliatsos, M.D.

    Department

    Pathology

  • Tsapkini Language Neuromodulation Lab

    We are exploring whether anodal tDCS when administered in combination with spelling, naming, or working memory therapy can improve language performance of PPA and MCI participants at least in the short term more than behavioral therapy alone. We are also investigating whether and how tDCS alters the neuropeptide signature in participants with PPA and MCI. We use proton magnetic resonance spectroscopy (1H-MRS) to monitor neuropeptide concentrations at the areas of stimulation. We hypothesize that tDCS will stabilize the decline of specific neuropeptides, but only in those areas of the brain where tDCS effectively results in more efficient gains in language compared to language therapy alone (with sham tDCS). Study results may help optimize future intervention in individuals with PPA and MCI by providing treatment alternatives in a neurodegenerative condition with no proven effective treatment. A better understanding of the therapeutic and neuromodulatory effects of tDCS in PPA and MCI w...ill offer insight into ways of impeding neurodegeneration that may improve quality of life for individuals with PPA and MCI and may provide insights into the mechanisms of this treatment for augmenting therapy for stroke as well. view more

    Research Areas: cognitive neuroscience, dementia

    Lab Website

    Principal Investigator

    Kyrana Tsapkini, Ph.D.

    Department

    Neurology

  • Veit Stuphorn Laboratory

    The Veit Stuphorn Laboratory studies the neurophysiological mechanisms that underlie decision making and self-control. We record the activity of single neurons in awake animals that are engaged in decision-making processes. This allows us to identify the types of signals that neurons in specific parts of the brain represent and the computations they carry out. We also study human subjects in the same tasks with the help of fMRI. These parallel experiments provide comparative information about decision processes in human and non-human primates.

    Research Areas: neurophysiology, neuronal signaling, decision making

    Principal Investigator

    Veit Stuphorn, Ph.D.

    Department

    Neuroscience

  • Venu Raman Research Lab

    The Raman laboratory is within the Division of Cancer Imaging Research in the Department of Radiology and Radiological Science. The focus of the laboratory is bench-to-bed side cancer research. We integrate molecular and cellular biology, developmental biology, cancer biology, molecular imaging techniques to study cancer formation and progression. Many of the projects in the lab investigate dysregulated genes in cancer and the translatability of this information to a clinical setting. One such project is to functionally decipher the role of a RNA helicase gene, DDX3, in the biogenesis of multiple cancer types such as breast, lung, brain, sarcoma, colorectal and prostate. Additionally, using a rational drug design approach, a small molecule inhibitor of DDX3 (RK-33) was synthesized and its potential for clinical translation is being investigated.

    Research Areas: breast cancer, cancer, in vitro findings, molecule inhibitors

    Principal Investigator

    Venu Raman, Ph.D.

    Department

    Radiology and Radiological Science

  • Vestibular NeuroEngineering Lab

    Research in the Vestibular NeuroEngineering Lab (VNEL) focuses on restoring inner ear function through “bionic” electrical stimulation, inner ear gene therapy, and enhancing the central nervous system’s ability to learn ways to use sensory input from a damaged inner ear. VNEL research involves basic and applied neurophysiology, biomedical engineering, clinical investigation and population-based epidemiologic studies. We employ techniques including single-unit electrophysiologic recording; histologic examination; 3-D video-oculography and magnetic scleral search coil measurements of eye movements; microCT; micro MRI; and finite element analysis. Our research subjects include computer models, circuits, animals and humans. For more information about VNEL, click here.
    VNEL is currently recruiting subjects for two first-in-human clinical trials:
    1) The MVI Multichannel Vestibular Implant Trial involves implantation of a “bionic” inner ear stimulator intended to partially restore sensation... of head movement. Without that sensation, the brain’s image- and posture-stabilizing reflexes fail, so affected individuals suffer difficulty with blurry vision, unsteady walking, chronic dizziness, mental fogginess and a high risk of falling. Based on designs developed and tested successfully in animals over the past the past 15 years at VNEL, the system used in this trial is very similar to a cochlear implant (in fact, future versions could include cochlear electrodes for use in patients who also have hearing loss). Instead of a microphone and cochlear electrodes, it uses gyroscopes to sense head movement, and its electrodes are implanted in the vestibular labyrinth. For more information on the MVI trial, click here.
    2) The CGF166 Inner Ear Gene Therapy Trial involves inner ear injection of a genetically engineered DNA sequence intended to restore hearing and balance sensation by creating new sensory cells (called “hair cells”). Performed at VNEL with the support of Novartis and through a collaboration with the University of Kansas and Columbia University, this is the world’s first trial of inner ear gene therapy in human subjects. Individuals with severe or profound hearing loss in both ears are invited to participate. For more information on the CGF166 trial, click here.
    view less

    Research Areas: neuroengineering, audiology, multichannel vestibular prosthesis, balance disorders, balance, vestibular, prosthetics, cochlea, vestibular implant

  1. 1
  2. 2
  3. 3
  4. 4
  5. 5