Find a Research Lab

Enter a research interest, principal investigator or keyword

Displaying 61 to 70 of 93 results for brain

Show: 10 · 20 · 50

  1. 5
  2. 6
  3. 7
  4. 8
  5. 9
  • Neuromodulation and Advanced Therapies Center

    We investigate the brain networks and neurotransmitters involved in symptoms of movement disorders, such as Parkinson's disease, and the mechanisms by which modulating these networks through electrical stimulation affects these symptoms. We are particularly interested in the mechanisms through which neuromodulation therapies like deep brain stimulation affect non-motor brain functions, such as cognitive function and mood. We use imaging of specific neurotransmitters, such as acetylcholine and dopamine, to understand the changes in brain chemistry associated with the clinical effects of deep brain stimulation and to predict which patients are likely to have changes in non-motor symptoms following DBS. Through collaborations with our neurosurgery colleagues, we explore brain function by making recordings during DBS surgery during motor and non-motor tasks. Dr. Mills collaborates with researchers in the Department of Neurosurgery, the Division of Geriatric and Neuropsychiatry in the Depar...tment of Psychiatry and Behavioral Sciences and in the Division of Nuclear Medicine within the Department of Radiology to translate neuroimaging and neurophysiology findings into clinical applications. view more

    Research Areas: Molecular imaging of effects of deep brain stimulation on cognitive function in Parkinson's disease, Trajectories and types of cognitive impairment in Parkinson's disease, Effects of neuromodulation on impulsivity and addiction-related behaviors, Parkinson's disease, Effects of transcranial direct current stimulation on mood disorders and cognitive dysfunction in Parkinson's disease, Relationship between patient-reported and objective cognitive impairments in Parkinson's disease

    Principal Investigator

    Kelly Mills, M.D., M.H.S.

    Department

    Neurology
    Neurosurgery

  • Neuro-Oncology Surgical Outcomes Laboratory

    Directed by Debraj “Raj” Mukherjee, MD, MPH, the laboratory focuses on improving access to care, reducing disparities, maximizing surgical outcomes, and optimizing quality of life for patients with brain and skull base tumors.



    The laboratory achieves these aims by creating and analyzing institutional and national databases, developing and validating novel patient-centered quality of life instruments, leveraging machine learning and artificial intelligence platforms to risk-stratify vulnerable patient populations, and designing novel surgical trials to push the boundaries of neurosurgical innovation.



    Our research also investigates novel approaches to improve neurosurgical medical education including studying the utility of video-based surgical coaching and the design of new operative instrumentation.

    Research Areas: medical education, surgical outcomes, neurosurgery, machine learning, access to care, surgical coaching, population health, quality of life, public health, artificial intelligence, oncology, disparities

  • Neuro-Vestibular and Ocular Motor Laboratory

    In our laboratory we study the brain mechanisms of eye movements and spatial orientation.

    -How magnetic stimulation through transcranial devices affects cortical brain regions
    -Neural mechanisms underlying balance, spatial orientation and eye movement
    -Mathematical models that describe the function of ocular motor systems and perception of spatial orientation
    -Short- and long-term adaptive processes underlying compensation for disease and functional recovery in patients with ocular motor, vestibular and perceptual dysfunction
    Developing and testing novel diagnostic tools, treatments, and rehabilitative strategies for patients with ocular motor, vestibular and spatial dysfunction

    Research Areas: perception of spatial orientation, ocular motor physiology

    Principal Investigator

    Amir Kheradmand, M.D.

    Department

    Neurology

  • O'Connor Lab

    How do brain dynamics give rise to our sensory experience of the world? The O'Connor lab works to answer this question by taking advantage of the fact that key architectural features of the mammalian brain are similar across species. This allows us to leverage the power of mouse genetics to monitor and manipulate genetically and functionally defined brain circuits during perception. We train mice to perform simple perceptual tasks. By using quantitative behavior, optogenetic and chemical-genetic gain- and loss-of-function perturbations, in vivo two-photon imaging, and electrophysiology, we assemble a description of the relationship between neural circuit function and perception. We work in the mouse tactile system to capitalize on an accessible mammalian circuit with a precise mapping between the sensory periphery and multiple brain areas. Our mission is to reveal the neural circuit foundations of sensory perception; to provide a framework to understand how circuit dysfunction causes ...mental and behavioral aspects of neuropsychiatric illness; and to help others fulfill creative potential and contribute to human knowledge. view more

    Research Areas: brain, mental illness, neuroscience, perception

    Lab Website

    Principal Investigator

    Daniel O'Connor, M.A., Ph.D.

    Department

    Neuroscience

  • Ocular Motor Physiology Laboratory

    Our research is directed toward how the brain controls the movements of the eyes (including eye movements induced by head motion) using studies in normal human beings, patients and experimental animals. The focus is on mechanisms underlying adaptive ocular motor control. More specifically, what are mechanisms by which the brain learns to cope with the changes associated with normal development and aging as well as the damage associated with disease and trauma? How does the brain keep its eye movement reflexes properly calibrated? Our research strategy is to make accurate, quantitative measures of eye movements in response to precisely controlled stimuli and then use the analytical techniques of the control systems engineer to interpret the findings.

    Research areas: 1) learning and compensation for vestibular disturbances that occur either within the labyrinth or more centrally within the brain, 2) the mechanisms by which the brain maintains correct alignment of the eyes to prevent d...iplopia and strabismus, and 3) the role of ocular proprioception in localizing objects in space for accurate eye-hand coordination.
    view more

    Research Areas: diplopia, Labyrinth, eye movement, strabismus, vestibular

  • Pankaj Jay Pasricha Lab

    Researchers in the Pankaj Jay Pasricha Lab are interested in the molecular mechanisms of visceral pain and restoration of enteric neural function with novel strategies, including neural stem cell transplants. Recent research has focused on the enteric nervous system and gut-brain axis, and the complexity of pain in chronic pancreatitis. Another recent study indicates that patients with underlying small intestinal bacterial overgrowth have significant delays in small bowel transit time as compared to those without, while another explored the safety and efficacy of carbon dioxide cryotherapy for treatment of neoplastic Barrett's esophagus.

    Research Areas: gastroenterology, stem cells, neurogastroenterology, pancreatitis, pain, Barrett's esophagus, motility disorders

    Principal Investigator

    Jay Pasricha, M.B.B.S., M.D.

    Department

    Medicine

  • Pediatric Cerebral Palsy and Epilepsy Lab

    The team headed by Shenandoah “Dody” Robinson, M.D., professor of neurosurgery, neurology and pediatrics, studies perinatal brain injury and repair. Employing developmentally age-appropriate models, the lab investigates neurological consequences of extremely preterm birth, including cerebral palsy, chronic pain, cognitive and behavioral impairment, epilepsy and posthemorrhagic hydrocephalus of prematurity.

    Research Areas: pediatric neurology, pediatric epilepsy, cerebral palsy

    Lab Website

    Principal Investigator

    Dody Robinson, M.D.

    Department

    Neurology
    Neurosurgery

  • Peter Agre Lab

    Work in the Peter Agre Lab focuses on the molecular makeup of human diseases, particularly malaria, hemolytic anemias and blood group antigens. In 2003, Dr. Agre earned the Nobel Prize in Chemistry for discovering aquaporin water channels. Building on that discovery, our recent research has included studies on the protective role of the brain water channel AQP4 in murine cerebral malaria, as well as defective urinary-concentrating ability as a result of a complete deficiency in aquaporin-1. We also collaborate on scientific training and research efforts with 20 Baltimore-area labs and in field studies in Zambia and Zimbabwe.

    Research Areas: infectious disease, anemia, malaria

    Principal Investigator

    Peter Agre, M.D.

    Department

    Biological Chemistry

  • Peter van Zijl Laboratory

    The Peter van Zijl Laboratory focuses on developing new methodologies for using MRI and magnetic resonance spectroscopy (MRS) to study brain function and physiology. In addition, we are working to understand the basic mechanisms of the MRI signal changes measured during functional MRI (fMRI) tests of the brain. We are also mapping the wiring of the brain (axonal connections between the brains functional regions) and designing new technologies for MRI to follow where cells are migrating and when genes are expressed. A more recent interest is the development of bioorganic biodegradable MRI contrast agents. Our ultimate goal is to transform these technologies into fast methods that are compatible with the time available for multi-modal clinical diagnosis using MRI.

    Research Areas: brain, magnetic resonance spectroscopy, MRI

  • Psychiatric Neuroimaging

    Psychiatric Neuroimaging (PNI) is active in neuropsychiatric research using imaging methods such as MRI, fMRI, PET and DTI to understand the mechanisms and brain networks underlying human cognition. PNI faculty have published hundreds of papers on a variety of brain disorders which include but are not limited to Alzheimer's disease, Parkinson's disease, bipolar disorder, and eating disorders. Faculty in the division have been awarded numerous peer-reviewed grants by the National Institutes of Health, foundations and other funding organizations.

    Research Areas: brain disorders

  1. 5
  2. 6
  3. 7
  4. 8
  5. 9