Find a Research Lab

Enter a research interest, principal investigator or keyword

Displaying 21 to 30 of 86 results for brain

Show: 10 · 20 · 50

  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  • Erwin Lab

    Schizophrenia, autism and other neurological disorders are caused by a complex interaction between inherited genetic risk and environmental experiences. The overarching goal of the group are to reveal molecular mechanisms of gene by environment interactions related to altered neural development and liability for brain disorders. Our research uses a hybrid of human stem cell models, post-mortem tissue and computational approaches to interrogate the contribution of epigenetic regulation and somatic mosaicism to brain diseases. Our previous work has demonstrated that the human brain exhibits extensive genetic variability between neurons within the same brain, termed "somatic mosaicism" due to mobile DNA elements which mediate large somatic DNA copy number variants. We study environment-responsive mechanisms and consequences for somatic mosaicism and are discovering the landscape of somatic mosaicism in the brain. We also study the epigenetic regulation of cell specification and activity-d...ependent states within the human dorsal lateral prefrontal cortex and striatum. view more

    Research Areas: autism, Cellular and Molecular Neuroscience, stem cells, Developmental Neuroscience, Neurobiology of Disease, Induced Pluripotent Stem Cell Models, Organoids, schizophrenia, genomics, Dystonia, Epigenomics

    Lab Website

    Principal Investigator

    Jennifer Erwin, Ph.D.

    Department

    Neurology

  • Esther Oh Lab

    The Esther Oh Lab is interested in developing biological markers for pre-clinical stages of Alzheimer's disease (AD). Our current research involves using transgenic models of AD to develop peripheral injections of monoclonal antibodies against amyloid-beta as a tool to detect a level of amyloid-beta that would be correlative to the amyloid-beta level in the brain.

    Research Areas: amyloid-beta, dementia, Alzheimer's disease, monoclonal antibodies

    Principal Investigator

    Esther Oh, M.D., Ph.D.

    Department

    Medicine

  • Functional Neurosurgery Laboratory

    The research goals of the Functional Neurosurgery Laboratory include the development of computational models to understand how brain function is affected by neurological conditions and how this abnormal function might be corrected or minimized by neuromodulation through electrical stimulation. The lab uses data collected from patients during epilepsy monitoring or in the operating room during DBS procedures to construct and calibrate the computational models. The models can be manipulated to explore functional changes and treatment possibilities. The other primary goal of the laboratory is the development of a neuromodulation system that applies stimulation pulses at specific phases of brain oscillatory activity. This technique is being explored in the context of Parkinson's disease as well as memory function, and may lead to less invasive therapeutic treatment system with more effective stimulation.

    Research Areas: epilepsy, movement disorders, Parkinson's disease, computational modeling, Functional neurosurgery

  • Haughey Lab: Neurodegenerative and Neuroinfectious Disease

    Dr. Haughey directs a disease-oriented research program that address questions in basic neurobiology, and clinical neurology. The primary research interests of the laboratory are:

    1. To identify biomarkers markers for neurodegenerative diseases including HIV-Associated Neurocognitive Disorders, Multiple Sclerosis, and Alzheimer’s disease. In these studies, blood and cerebral spinal fluid samples obtained from ongoing clinical studies are analyzed for metabolic profiles through a variety of biochemical, mass spectrometry and bioinformatic techniques. These biomarkers can then be used in the diagnosis of disease, as prognostic indicators to predict disease trajectory, or as surrogate markers to track the effectiveness of disease modifying interventions.
    2. To better understand how the lipid components of neuronal, and glial membranes interact with proteins to regulate signal transduction associated with differentiation, motility, inflammatory signaling, survival, and neuronal excitab...ility.
    3. To understand how extracellular vesicles (exosomes) released from brain resident cells regulate neuronal excitability, neural network activity, and peripheral immune responses to central nervous system damage and infections.
    4. To develop small molecule therapeutics that regulate lipid metabolism as a neuroprotective and restorative strategy for neurodegenerative conditions.
    view less

    Research Areas: multiple sclerosis, PTSD, HAND, HIV

    Lab Website

    Principal Investigator

    Norman Haughey, Ph.D.

    Department

    Neurology
    Neurosurgery

  • Health Technologies

    The APL Health Technologies program's functional restoration focus area includes two portfolios with particular relevance in neurology. The first focuses on motor restoration, using teams with expertise in robotics, microsensors, haptics, artificial intelligence and brain-machine interfaces. One set of projects, currently sponsored by Defense Advanced Research Projects Agency (DARPA) and the Henry Jackson Foundation, centers on a bionic arm technology that integrates with bone and muscle in amputee patients, restoring a variety of normal functions to the patient like cooking, folding clothing, hand shaking, and hand gestures. This portfolio explores direct brain control of the bionic limb, through work led by Dr. Nathan Crone of Johns Hopkins Neurology and Dr. Pablo Celnik of Johns Hopkins Physical Medicine and Rehabilitation. Another set of related work aims to restore motor function by better understanding and using brain signals through brain-machine interfaces. This work is current...ly funded by the National Science Foundation and industry partners. Also in the functional restoration focus area is the vision restoration portfolio. In a partnership with Second Sight and the Mann Fund, the work aims to enhance function of a bionic eye, which couples a retinal implant with a computer vision system to restore vision in blind individuals with retinitis pigmentosa. Current work in the human-machine teaming focus area includes a portfolio that is building artificial intelligence systems that improve radiologic and ophthalmic diagnostics. Another portfolio, currently focused in the surgical setting, enhances the physician's ability to visualize and manipulate the physical world, such as with orthopaedic surgery. view more

    Research Areas: robotics, imaging systems, machine learning, data fusion, artificial intelligence

    Lab Website

    Principal Investigator

    Adam Cohen, M.D.

    Department

    Neurology

  • Healthy Brain Program

    The Brain Health Program is a multidisciplinary team of faculty from the departments of neurology, psychiatry, epidemiology, and radiology lead by Leah Rubin and Jennifer Coughlin. In the hope of revealing new directions for therapies, the group studies molecular biomarkers identified from tissue and brain imaging that are associated with memory problems related to HIV infection, aging, dementia, mental illness and traumatic brain injury. The team seeks to advance policies and practices to optimize brain health in vulnerable populations while destigmatizing these brain disorders.

    Current and future projects include research on: the roles of the stress response, glucocorticoids, and inflammation in conditions that affect memory and the related factors that make people protected or or vulnerable to memory decline; new mobile apps that use iPads to improve our detection of memory deficits; clinical trials looking at short-term effects of low dose hydrocortisone and randomized to 28 day...s of treatment; imaging brain injury and repair in NFL players to guide players and the game; and the role of inflammation in memory deterioration in healthy aging, patients with HIV, and other neurodegenerative conditions. view less

    Research Areas: HIV infection, mental illness, aging, traumatic brain injury, dementia