Find a Research Lab

Enter a research interest, principal investigator or keyword

Displaying 11 to 20 of 85 results for brain

Show: 10 · 20 · 50

  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  • Carlo Colantuoni Laboratory

    Dr. Colantuoni and his colleagues explore human brain development and molecular mechanisms that give rise to risk for complex brain disease. His team uses genomic technologies to examine human brain tissue as well as stem models and vast public data resources.

    Research Areas: stem cells, brain tissue, brain development, genomics

    Principal Investigator

    Carlo Colantuoni, Ph.D.

    Department

    Neurology
    Neuroscience

  • Christopher Potter Lab

    The Christopher Potter Lab functions at an intersection between systems and cellular neuroscience. We are interested in how neurons and circuits function in the brain to achieve a common goal (olfaction), but we also develop, utilize and build tools (molecular and genetic) that allow us to directly alter neuronal functions in a living organism. The specific focus of my laboratory is to understand how the insect brain receives, interprets, and responds to odors. Insects rely on their sense of smell for all major life choices, from foraging to mating, from choosing where to lay eggs to avoiding predators and dangers. We are interested in understanding at the neuronal level how odors regulate these behaviors. Our long-term aim is to apply this knowledge to better control insects that pose a threat to human health. Our general approach towards achieving this goal is to develop and employ new genetic methods that enable unprecedented control over neural circuits in both the model organism D...rosophila melanogaster and human malaria vector Anopheles gambiae. view more

    Research Areas: neural circuits, neurons, brain, neuroscience, olfactory system

    Lab Website

    Principal Investigator

    Christopher Potter, Ph.D.

    Department

    Neuroscience

  • Clinical and Computational Auditory neuroscience

    Our laboratory investigates the neural bases of sound processing in the human brain. We combine electrophysiology recordings (intracranial, scalp), behavioral paradigms, and statistical modeling methods to study the cortical dynamics of normal and impaired auditory perception. We are interested in measuring and modeling variability in spatiotemporal cortical response patterns as a function of individual listening abilities and acoustic sound properties. Current studies are investigating the role of high-frequency (>30 Hz) neural oscillations in human auditory perception.

    Research Areas: vestibular disorders

    Lab Website

    Principal Investigator

    Dana Boatman, Ph.D.

    Department

    Neurology

  • Cochlear Neurotransmission Group

    The Cochlear Neurotransmission Group studies the generation and propagation of neural signals in the inner ear. Our laboratories use biophysical, electrophysiological, molecular biological and histological methods to determine fundamental molecular mechanisms by which neurotransmitters are released from primary sensory cells ('hair cells') to excite second order neurons carrying information to the brain. We apply these same techniques to study inhibitory feedback produced by brain neurons that project to and regulate the sensitivity of the cochlea.

    Research Areas: vestibular disorders, neurotology/otology

  • Cohen Lab

    The Cohen Lab studies neural circuits underlying reward, mood and decision making. We seek to understand how neural circuits control fundamental mammalian behaviors. Many disorders, including depression, schizophrenia, drug addiction and Parkinson's disease, appear to involve dysfunction of monoaminergic signaling. Using cell-type-specific tools and well-controlled behavioral tasks in mice, we aim to understand the function of monoaminergic circuits in behavior. We hope these basic discoveries will lead to an understanding of the biology of the brain and better treatments for disorders of the brain.

    Research Areas: neural circuits, brain, schizophrenia, mental illness, neuroscience, Parkinson's disease

    Lab Website

    Principal Investigator

    Jeremiah Cohen, Ph.D.

    Department

    Neuroscience

  • Courtney Robertson Lab

    Work in the Courtney Robertson Lab is focused on identifying interventions that could minimize the neurological deficits that can persist after pediatric traumatic brain injury (TBI). One study used a preclinical model to examine potential disruption of mitochondrial function and alterations in cerebral metabolism. It was found that a substantial amount of mitochondrial dysfunction is present in the first six hours after TBI. In addition, we are using nuclear magnetic resonance spectroscopy to evaluate global and regional alterations in brain metabolism after TBI. We're also collaborating with researchers at the University of Pennsylvania to compare mitochondrial function after head injury in different clinically relevant models.

    Research Areas: traumatic brain injuries, magnetic resonance spectroscopy, pediatrics, mitochondria, pediatric critical care medicine

  • Daniel Weinberger Laboratory

    The Daniel Weinberger Laboratory focuses on the neurobiological mechanisms of genetic risk for developmental brain disorders. We study the genetic regulation of the transcriptome in normal human brain across the human life span and in brains from patients with various psychiatric disorders. We also study the impact of genetic variation on aspects of human brain development and function linked with risk for schizophrenia and related psychiatric disorders. Our lab uses unique molecular and clinical datasets and biological materials from a large sample of families with affected and unaffected offspring and normal volunteers. These datasets include DNA, lymphoblast and fibroblast cell lines, and extensive quantitative phenotypes related to genetic risk for schizophrenia, including detailed cognitive assessments and various neuroimaging assays. In other research, we are working on a human brain transcriptome project that is RNA sequencing over 1,000 human brain samples in various regi...ons and based also on sorting of specific celliular phentypes. We are exploring the molecular processing of the gene and its implications for cognition and aspects of human temperament. view more

    Research Areas: neurobiology, brain, transcriptome, schizophrenia, psychiatric disorders, genomics, developmental disorders, RNA

  • David Linden Lab

    The David Linden Laboratory has used both electrode and optical recording in cerebellar slice and culture model systems to explore the molecular requirements for induction and expression of these phenomena. Along the way, we discovered a new form of plasticity. In addition, we have expanded our analysis to include use-dependent synaptic and non-synaptic plasticity in the cerebellar output structure, the deep nuclei.

    Our investigations are central to understanding the cellular substrates of information storage in a brain area where the behavioral relevance of the inputs and outputs is unusually well defined. In addition, our investigations have potential clinical relevance for cerebellar motor disorders and for disorders of learning and memory generally.

    Research Areas: motor learning, synaptic plasticity, neurobiology, memory, cerebellum, brain

    Principal Investigator

    David Linden, Ph.D.

    Department

    Neuroscience

  • Eberhart, Rodriguez and Raabe Lab

    Utilizing a combination of tissue-based, cell-based, and molecular approaches, our research goals focus on abnormal telomere biology as it relates to cancer initiation and tumor progression, with a particular interest in the Alternative Lengthening of Telomeres (ALT) phenotype. In addition, our laboratories focus on cancer biomarker discovery and validation with the ultimate aim to utilize these novel tissue-based biomarkers to improve individualized prevention, detection, and treatment strategies.

    Research Areas: stem cells, eye tumor, tumor cell metastasis, brain tumor

    Lab Website

    Principal Investigator

    Charles Eberhart, M.D., Ph.D.

    Department

    Pathology

  • Ed Connor Laboratory

    The Connor Laboratory focuses on understanding the neural algorithms that make object vision possible. The goal of our research is to explain the neural basis of visual experience and contribute to designs for more powerful machine vision systems and brain-machine interfaces.

    Research Areas: vision, brain-machine interfaces, object perception

    Principal Investigator

    Charles Connor, Ph.D.

    Department

    Neuroscience

  1. 1
  2. 2
  3. 3
  4. 4
  5. 5