Find a Research Lab

Enter a research interest, principal investigator or keyword

Displaying 21 to 38 of 38 results for blood

Show: 10 · 20 · 50

  1. 1
  2. 2
  • Linda Smith-Resar Lab

    The Linda Smith-Resar Lab primarily investigates hematologic malignancy and molecular mechanisms that lead to cancer as well as sickle cell anemia. Recent studies suggest that education is an important and effective component of a patient blood management program and that computerized provider order entry algorithms may serve to maintain compliance with evidence-based transfusion guidelines. Another recent study indicated that colonic epithelial cells undergo metabolic reprogramming during their evolution to colorectal cancer, and the distinct metabolites could serve as diagnostic tools or potential targets in therapy or primary prevention.

    Research Areas: blood disorders, sickle cell diseases, blood management programs, hematologic malignancies

    Lab Website

    Principal Investigator

    Linda Smith-Resar, M.D.

    Department

    Medicine

  • Machine Biointerface Lab

    Dr. Fridman's research group invents and develops bioelectronics for Neuroengineering and Medical Instrumentation applications. We develop innovative medical technology and we also conduct the necessary biological studies to understand how the technology could be effective and safe for people.

    Our lab is currently focused on developing the "Safe Direct Current Stimulation" technology, or SDCS. Unlike the currently available commercial neural prosthetic devices, such as cochlear implants, pacemakers, or Parkinson's deep brain stimulators that can only excite neurons, SDCS can excite, inhibit, and even sensitize them to input. This new technology opens a door to a wide range of applications that we are currently exploring along with device development: e.g. peripheral nerve stimulation for suppressing neuropathic pain, vestibular nerve stimulation to correct balance disorders, vagal nerve stimulation to suppress an asthma attack, and a host of other neuroprosthetic applications.

    M...edical Instrumentation MouthLab is a "tricorder" device that we invented here in the Machine Biointerface Lab. The device currently obtains all vital signs within 60s: Pulse rate, breathing rate, temperature, blood pressure, blood oxygen saturation, electrocardiogram, and FEV1 (lung function) measurement. Because the device is in the mouth, it has access to saliva and to breath and we are focused now on expanding its capability to obtaining measures of dehydration and biomarkers that could be indicative of a wide range of internal disorders ranging from stress to kidney failure and even lung cancer.
    view less

    Research Areas: medical instruments, bioelectricities, neuroengineering, nerve stimulation

  • Mark Levis Laboratory

    Our broad research goals are to identify and validate novel molecular therapeutic targets in hematopoietic malignancies. We are interested in the identification and pre-clinical development of novel targeted therapies, and, in particular, the “translational” step of this research by using correlative studies to incorporate these novel therapies into existing treatments. Our research is of particular interest to those who wish to be involved in directly translating the results of laboratory bench work into meaningful benefits for patients.

    Currently, we are actively involved in the pre-clinical and clinical development of small molecule kinase inhibitors targeting the FLT3 signaling pathway in acute myeloid leukemia. We are interested in 3 compounds in particular- AC220, a FLT3/KIT inhibitor; crenolanib,a selective FLT3 inhibitor with activity against resistant point mutations; and PLX3397, another inhibitor of KIT and FLT3. The active projects in the lab include:
    1) Characterizati...on of cytotoxic responses of different hematologic malignancies to FLT3 and KIT kinase inhibition; 2) Examination of the interaction of bone marrow stroma and stroma-derived cytokines on the efficacy of these inhibitors; 3) Examination of the differential effect of FLT3 inhibition versus combined FLT3/KIT inhibition on acute myeloid leukemia and bone marrow progenitor cells; and 4) Correlative laboratory studies using blood and marrow samples from patients treated with FLT3 inhibitors, with the aim of developing predictive models for clinical response. view less

    Research Areas: leukemia

    Lab Website

    Principal Investigator

    Mark Levis, M.D., Ph.D.

    Department

    Medicine
    Oncology

  • Nicholas Flavahan Lab

    The Nicholas Flavahan Lab primarily researches the cellular interactions and subcellular signaling pathways that control normal vascular function and regulate the initiation of vascular disease. We use biochemical and molecular analyses of cellular mediators and cell signaling mechanisms in cultured vascular cells, while also conducting physiological assessments and fluorescent microscopic imaging of signaling systems in isolated blood vessels. A major component of our research involves aterioles, tiny blood vessles that are responsible for controlling the peripheral resistance of the cardiovascular system, which help determine organ blood flow.

    Research Areas: biochemistry, Raynaud's phenomenon, vascular biology, vasospasms

  • Ocular Vasculogenesis and Angiogenesis Lab (OVAL)

    The lab studies the development of blood vessels in the eye and how they change in diseases like retinopathy of prematurity, sickle cell and diabetic retinopathies, and age-related macular degeneration (AMD). The ultimate goal of the lab is to develop a new generation of therapies that, when delivered to the eye, allow the tissues of the eye to essentially treat themselves only when needed. The goal is to have the tissues generate their own therapeutics when needed, and stop production when the condition is resolved. These therapies will help reduce the need for repeated treatment and provide focused therapy, rather than treating the body with chemicals.

    Research Areas: vascular development, age-related mascular degeneration, sickle cell diseases, nanotechnology, retinopathy of prematurity, diabetic retinopathy

    Lab Website

    Principal Investigator

    Gerard Lutty, Ph.D.

    Department

    Ophthalmology

  • Paul Rothman Lab

    Research in the Paul Rothman Lab has focused on cytokines. We’ve investigated the role these molecules play in the normal development of blood cells as well as the abnormal blood-cell development that leads to leukemia. We’ve also studied the function of cytokines in immune system responses to asthma and allergies.

    Research Areas: leukemia, asthma, allergies, cytokines, immune system

    Lab Website

    Principal Investigator

    Paul Rothman, M.D.

    Department

    Medicine

  • Peter Abadir Lab

    Research in the Peter Abadir Lab focuses on the renin-angiotensin system (RAS), a signaling pathway that regulates blood pressure and has been linked independently to both aging and inflammation. We’re particularly interested in changes in RAS that occur with aging. We also study signal transduction and the role of the crosstalk between angiotensin II receptor in aging and are interested in understanding the function of angiotensin II in the process of vascular aging.

    Research Areas: renin-angiotensin system, aging, inflammation, gerontology

    Principal Investigator

    Peter Abadir, M.D.

    Department

    Medicine

  • Peter Agre Lab

    Work in the Peter Agre Lab focuses on the molecular makeup of human diseases, particularly malaria, hemolytic anemias and blood group antigens. In 2003, Dr. Agre earned the Nobel Prize in Chemistry for discovering aquaporin water channels. Building on that discovery, our recent research has included studies on the protective role of the brain water channel AQP4 in murine cerebral malaria, as well as defective urinary-concentrating ability as a result of a complete deficiency in aquaporin-1. We also collaborate on scientific training and research efforts with 20 Baltimore-area labs and in field studies in Zambia and Zimbabwe.

    Research Areas: infectious disease, anemia, malaria

    Principal Investigator

    Peter Agre, M.D.

    Department

    Biological Chemistry

  • Pluznick Lab

    The Pluznick Lab is interested in the role that chemosensation plays in regulating physiological processes, particularly in the kidney and the cardiovascular system. We have found that sensory receptors (olfactory receptors, taste receptors, and other G-protein coupled receptors) are expressed in the kidney and in blood vessels, and that individual receptors play functional roles in whole-animal physiology. We are currently working to identify the full complement of sensory receptors found in the kidney, and are working to understand the role that each receptor plays in whole-animal physiology by using a variety of in vitro (receptor localization, ligand screening) and in vivo (whole-animal physiology) techniques.

    Research Areas: sensory receptors, cardiovascular, physiology, chemosensation, renal

    Lab Website

    Principal Investigator

    Jennifer Pluznick, Ph.D.

    Department

    Physiology

  • Raymond Koehler Lab

    Research in the Raymond Koehler Lab explores cerebrovascular physiology and cerebral ischemic injury caused by stroke and cardiac arrest, using protein analysis, immunohistochemistry and histology. We also study ischemic preconditioning, neonatal hypoxic-ischemic encephalopathy and the mechanisms of abnormal cerebrovascular reactivity after ischemia. We 're examining ways to improve tissue oxygenation and seek to better understand the mechanisms that connect an increase in cerebral blood flow to neuronal activity.

    Research Areas: cardiac arrest, neurons, cerebrovascular, resuscitation, stroke, oxygen

  • Richard John Jones Lab

    The Richard J. Jones Lab studies normal and cancerous stem cells in order to make clinical improvements in areas such as blood and marrow transplantation (BMT). We discovered one of the most common stem-cell markers, Aldefluor, which identifies cells based on their expression of aldehyde dehydrogenase 1 (ALDH1), and have used this marker to detect and characterize normal stem cells and cancer stem cells from many hematologic malignancies. We also developed post-transplant cyclophosphamide and effective related haploidentical BMT.

    Research Areas: enzymes, stem cells, blood and marrow transplantation, leukemia, cancer

    Principal Investigator

    Richard Jones, M.D.

    Department

    Medicine

  • Rita Kalyani Lab

    Research in the Rita Kalyani Lab examines the decreased physical functioning observed in patients with diabetes as they age. Through several ongoing epidemiological cohorts, we are investigating the association of high blood glucose and high insulin levels with accelerated muscle loss, and possible contributions to the physical disability observed in diabetes. We are currently involved in clinical studies that aim to understand the underlying mechanisms for these associations and to facilitate the development of novel strategies to prevent muscle loss and disability in people with diabetes.

    Research Areas: metabolism, insulin, diabetes, cardiovascular diseases, endocrinology, blood glucose

    Principal Investigator

    Rita Kalyani, M.D., M.H.S.

    Department

    Medicine

  • Romsai Boonyasai Lab

    Research in the Romsai Boonyasai Lab focuses on systems-based approaches for improving health care quality, including reducing harm during care transitions after hospital discharge and improving outcomes related to hypertension and other chronic diseases. We recently have focused on developing and evaluating practice-based tools for improving the accuracy of blood pressure measurement, overcoming clinical inertia to treatment, and engaging patients in self-management of their health.

    Research Areas: health care quality, hypertension, care coordination, chronic illnesses

    Lab Website

    Principal Investigator

    Romsai Boonyasai, M.D., M.P.H.

    Department

    Medicine

  • Samuel R. Denmeade Laboratory

    The main research goals of my laboratory are: (1) to identify and study the biology of novel cancer selective targets whose enzymatic function can be exploited for therapeutic and diagnostic purposes; (2) to develop methods to target novel agents for activiation by these cancer selective targets while avoiding or minimizing systemic toxicity; (3) to develop novel agents for imaging cancer sites at earliest stages. To accomplish these objectives the lab has originally focused on the development of prodrugs or protoxins that are inactive when given systemically via the blood and only become activated by tumor or tissue specific proteases present within sites of tumor. Using this approach, we are developing therapies targeted for activation by the serine proteases prostate-specific antigen (PSA), human glandular kallikrein 2 (hK2) and fibroblast activation protein (FAP) as well as the membrane carboxypeptidase prostate-specific membrane antigen (PSMA). One such approach developed in the l...ab consists of a potent bacterial protoxin that we have reengineered to be selectively activated by PSA within the Prostate. This PSA-activated toxin is currently being tested clinically as treatment for men with recurrent prostate cancer following radiation therapy. In a related approach, a novel peptide-cytotoxin prodrug candidate that is activated by PSMA has been identified and is this prodrug candidate is now entering early phase clinical development. In addition, we have also identified a series of potent inhibitors of PSA that are now under study as drug targeting and imaging agents to be used in the treatment and detection of prostate cancer.
    view more

    Research Areas: cancer therapies, prodrugs, cancer, protease inhibitors, protoxins, cancer imaging

  • Sarbjit Saini Lab

    The research in the Sarbjit Saini Laboratory focuses on IgE receptor biology and IgE receptor-mediated activation of blood basophils and mast cells. We have examined the role of IgE receptor expression and activation in allergic airways disease, anaphylaxis and chronic urticaria. Our research has been supported by the NIH, American Lung Association and the AAAAI. Our current research interests have focused mechanisms of diease in allergic asthma, allergic rhinitis and also translational studies in chronic idiopathic urticaria.

    Research Areas: anaphylaxis, airway diseases, cell biology, asthma, allergies, chronic idiopathic urticaria

    Principal Investigator

    Sarbjit Saini, M.D.

    Department

    Medicine

  • Sean T. Prigge Lab

    Current research in the Sean T. Prigge Lab explores the biochemical pathways found in the apicoplast, an essential organelle found in malaria parasites, using a combination of cell biology and genetic, biophysical and biochemical techniques. We are particularly focused on the pathways used for the biosynthesis and modification of fatty acids and associated enzyme cofactors, including pantothenate, lipoic acid, biotin and iron-sulfur clusters. We want to better understand how the cofactors are acquired and used, and whether they are essential for the growth of blood-stage malaria parasites.

    Research Areas: biochemistry, enzymes, immunology, apicoplasts, malaria, molecular microbiology

  • Sharon Turban Lab

    Research in the Sharon Turban Lab focuses on the effects of sodium and potassium on blood pressure and on kidney function. We lead the Chronic Kidney Disease-Potassium (CKD-K) clinical trial, funded by American Heart Association, which examines the benefits and safety of two levels of potassium intake in patients with kidney disease. Other research includes the Chronic Renal Insufficiency Cohort (CRIC) study, which aims to improve the understanding of chronic kidney disease and related cardiovascular illness.

    Research Areas: sodium, kidney diseases, potassium, chronic kidney disease, blood pressure

    Principal Investigator

    Sharon Turban, M.D.

    Department

    Medicine

  • Steven Frank Lab

    Research in the Steven Frank Lab focuses on processes to improve blood use and to avoid blood transfusions for patients who do not want to receive blood or blood products. Processes include autologous hemodilution and cell salvage, and treating or averting anemia pre- and post-surgery. Other lab studies have focused on blood conservation, bloodless medicine surgery, the regulation of body temperature during surgery and methods of preventing hypothermia during surgery.

    Research Areas: bloodless surgery, blood disorders, hypothermia, blood transfusions, blood conservation, cell salvage, anemia, autologous hemodilution, bloodless medicine

  1. 1
  2. 2