Find a Research Lab

Enter a research interest, principal investigator or keyword

Displaying 21 to 30 of 40 results for blood

Show: 10 · 20 · 50

  1. 1
  2. 2
  3. 3
  4. 4
  • Linda Smith-Resar Lab

    The Linda Smith-Resar Lab primarily investigates hematologic malignancy and molecular mechanisms that lead to cancer as well as sickle cell anemia. Recent studies suggest that education is an important and effective component of a patient blood management program and that computerized provider order entry algorithms may serve to maintain compliance with evidence-based transfusion guidelines. Another recent study indicated that colonic epithelial cells undergo metabolic reprogramming during their evolution to colorectal cancer, and the distinct metabolites could serve as diagnostic tools or potential targets in therapy or primary prevention.

    Research Areas: blood disorders, sickle cell diseases, blood management programs, hematologic malignancies

    Lab Website

    Principal Investigator

    Linda Smith-Resar, M.D.

    Department

    Medicine

  • Machine Biointerface Lab

    Dr. Fridman's research group invents and develops bioelectronics for Neuroengineering and Medical Instrumentation applications. We develop innovative medical technology and we also conduct the necessary biological studies to understand how the technology could be effective and safe for people.

    Our lab is currently focused on developing the "Safe Direct Current Stimulation" technology, or SDCS. Unlike the currently available commercial neural prosthetic devices, such as cochlear implants, pacemakers, or Parkinson's deep brain stimulators that can only excite neurons, SDCS can excite, inhibit, and even sensitize them to input. This new technology opens a door to a wide range of applications that we are currently exploring along with device development: e.g. peripheral nerve stimulation for suppressing neuropathic pain, vestibular nerve stimulation to correct balance disorders, vagal nerve stimulation to suppress an asthma attack, and a host of other neuroprosthetic applications.

    M...edical Instrumentation MouthLab is a "tricorder" device that we invented here in the Machine Biointerface Lab. The device currently obtains all vital signs within 60s: Pulse rate, breathing rate, temperature, blood pressure, blood oxygen saturation, electrocardiogram, and FEV1 (lung function) measurement. Because the device is in the mouth, it has access to saliva and to breath and we are focused now on expanding its capability to obtaining measures of dehydration and biomarkers that could be indicative of a wide range of internal disorders ranging from stress to kidney failure and even lung cancer.
    view less

    Research Areas: medical instruments, bioelectricities, neuroengineering, nerve stimulation

  • Maheshwari Lab

    We study the pathogenesis of neonatal necrotizing enterocolitis, which is a leading cause of morbidity and mortality in premature infants.

    Research Areas: blood transfusions, intestinal injury, neonate, inflammation, premature infants, macrophages

    Principal Investigator

    Akhil Maheshwari, M.B.B.S., M.D.

    Department

    Pediatrics

  • Mark Levis Laboratory

    Our broad research goals are to identify and validate novel molecular therapeutic targets in hematopoietic malignancies. We are interested in the identification and pre-clinical development of novel targeted therapies, and, in particular, the “translational” step of this research by using correlative studies to incorporate these novel therapies into existing treatments. Our research is of particular interest to those who wish to be involved in directly translating the results of laboratory bench work into meaningful benefits for patients.

    Currently, we are actively involved in the pre-clinical and clinical development of small molecule kinase inhibitors targeting the FLT3 signaling pathway in acute myeloid leukemia. We are interested in 3 compounds in particular- AC220, a FLT3/KIT inhibitor; crenolanib,a selective FLT3 inhibitor with activity against resistant point mutations; and PLX3397, another inhibitor of KIT and FLT3. The active projects in the lab include:
    1) Characterizati...on of cytotoxic responses of different hematologic malignancies to FLT3 and KIT kinase inhibition; 2) Examination of the interaction of bone marrow stroma and stroma-derived cytokines on the efficacy of these inhibitors; 3) Examination of the differential effect of FLT3 inhibition versus combined FLT3/KIT inhibition on acute myeloid leukemia and bone marrow progenitor cells; and 4) Correlative laboratory studies using blood and marrow samples from patients treated with FLT3 inhibitors, with the aim of developing predictive models for clinical response. view less

    Research Areas: leukemia

    Lab Website

    Principal Investigator

    Mark Levis, M.D., Ph.D.

    Department

    Medicine
    Oncology

  • Nicholas Flavahan Lab

    The Nicholas Flavahan Lab primarily researches the cellular interactions and subcellular signaling pathways that control normal vascular function and regulate the initiation of vascular disease. We use biochemical and molecular analyses of cellular mediators and cell signaling mechanisms in cultured vascular cells, while also conducting physiological assessments and fluorescent microscopic imaging of signaling systems in isolated blood vessels. A major component of our research involves aterioles, tiny blood vessles that are responsible for controlling the peripheral resistance of the cardiovascular system, which help determine organ blood flow.

    Research Areas: biochemistry, Raynaud's phenomenon, vascular biology, vasospasms

  • Ocular Vasculogenesis and Angiogenesis Lab (OVAL)

    The lab studies the development of blood vessels in the eye and how they change in diseases like retinopathy of prematurity, sickle cell and diabetic retinopathies, and age-related macular degeneration (AMD). The ultimate goal of the lab is to develop a new generation of therapies that, when delivered to the eye, allow the tissues of the eye to essentially treat themselves only when needed. The goal is to have the tissues generate their own therapeutics when needed, and stop production when the condition is resolved. These therapies will help reduce the need for repeated treatment and provide focused therapy, rather than treating the body with chemicals.

    Research Areas: vascular development, age-related mascular degeneration, sickle cell diseases, nanotechnology, retinopathy of prematurity, diabetic retinopathy

    Lab Website

    Principal Investigator

    Gerard Lutty, Ph.D.

    Department

    Ophthalmology

  • Paul Rothman Lab

    Research in the Paul Rothman Lab has focused on cytokines. We’ve investigated the role these molecules play in the normal development of blood cells as well as the abnormal blood-cell development that leads to leukemia. We’ve also studied the function of cytokines in immune system responses to asthma and allergies.

    Research Areas: leukemia, asthma, allergies, cytokines, immune system

    Lab Website

    Principal Investigator

    Paul Rothman, M.D.

    Department

    Medicine

  • Peter Abadir Lab

    Research in the Peter Abadir Lab focuses on the renin-angiotensin system (RAS), a signaling pathway that regulates blood pressure and has been linked independently to both aging and inflammation. We’re particularly interested in changes in RAS that occur with aging. We also study signal transduction and the role of the crosstalk between angiotensin II receptor in aging and are interested in understanding the function of angiotensin II in the process of vascular aging.

    Research Areas: renin-angiotensin system, aging, inflammation, gerontology

    Principal Investigator

    Peter Abadir, M.D.

    Department

    Medicine

  • Peter Agre Lab

    Work in the Peter Agre Lab focuses on the molecular makeup of human diseases, particularly malaria, hemolytic anemias and blood group antigens. In 2003, Dr. Agre earned the Nobel Prize in Chemistry for discovering aquaporin water channels. Building on that discovery, our recent research has included studies on the protective role of the brain water channel AQP4 in murine cerebral malaria, as well as defective urinary-concentrating ability as a result of a complete deficiency in aquaporin-1. We also collaborate on scientific training and research efforts with 20 Baltimore-area labs and in field studies in Zambia and Zimbabwe.

    Research Areas: infectious disease, anemia, malaria

    Principal Investigator

    Peter Agre, M.D.

    Department

    Biological Chemistry

  • Pluznick Lab

    The Pluznick Lab is interested in the role that chemosensation plays in regulating physiological processes, particularly in the kidney and the cardiovascular system. We have found that sensory receptors (olfactory receptors, taste receptors, and other G-protein coupled receptors) are expressed in the kidney and in blood vessels, and that individual receptors play functional roles in whole-animal physiology. We are currently working to identify the full complement of sensory receptors found in the kidney, and are working to understand the role that each receptor plays in whole-animal physiology by using a variety of in vitro (receptor localization, ligand screening) and in vivo (whole-animal physiology) techniques.

    Research Areas: sensory receptors, cardiovascular, physiology, chemosensation, renal

    Lab Website

    Principal Investigator

    Jennifer Pluznick, Ph.D.

    Department

    Physiology

  1. 1
  2. 2
  3. 3
  4. 4