Skip Navigation

Find a Research Lab

Research Lab Results for blood

Displaying 11 to 20 of 35 results
Results per page:
  • Jinyuan Zhou Lab

    Lab Website

    Dr. Zhou's research focuses on developing new in vivo MRI and MRS methodologies to study brain ...function and disease. His most recent work includes absolute quantification of cerebral blood flow, quantification of functional MRI, high-resolution diffusion tensor imaging (DTI), magnetization transfer mechanism, development of chemical exchange saturation transfer (CEST) technology, brain pH MR imaging, and tissue protein MR imaging. Notably, Dr. Zhou and his colleagues invented the amide proton transfer (APT) approach for brain pH imaging and tumor protein imaging. His initial paper on brain pH imaging was published in Nature Medicine in 2003 and his most recent paper on tumor treatment effects was published in Nature Medicine in 2011. A major part of his current research is the pre-clinical and clinical imaging of brain tumors, strokes, and other neurologic disorders using the APT and other novel MRI techniques. The overall goal is to achieve the MRI contrast at the protein and peptide level without injection of exogenous agents and improve the diagnostic capability of MRI and the patient outcomes. view more

    Research Areas: magnetic resonance, functional magnetic resonance imaging, brain, stroke
  • Jodi Segal Lab

    Principal Investigator:
    Jodi Segal, M.D., M.P.H.
    Medicine

    Research in the Jodi Segal Lab focuses on developing methodologies to use observational data to... understand the use of new drugs, particularly drugs for treating diabetes, blood disorders and osteoporosis. We apply advanced methods for evidence-based review and meta-analysis, and—in collaboration with Johns Hopkins biostatisticians—we have developed new methodologies for observational research (using propensity scores to adjust for covariates that change over time) and methods to account for competing risks and heterogeneity of treatment effects in analyses. view more

    Research Areas: blood disorders, osteoporosis, diabetes, drugs, evidence-based medicine
  • John Schroeder Lab

    Principal Investigator:
    John Schroeder, Ph.D.
    Medicine

    The John Schroeder Lab focuses on understanding the role human basophils and mast cells play in... allergic reactions, as it relates not only to their secretion of potent inflammatory mediators (e.g., histamine and leukotriene C4) but also to their production of pro-inflammatory cytokines. We have long utilized human cells rather than cell lines in order to address the parameters, signal transduction and pharmacological aspects underlying clinically relevant basophil and mast cell responses. As a result, the lab has established protocols for rapidly isolating large numbers of basophils at high purity from human blood and for growing culture-derived mast cells/basophils from human progenitor cells. A variety of assays and techniques are also in place for concurrently detecting cytokines and mediators following a wide range of stimuli. These have facilitated the in vitro testing of numerous anti-allergic drugs for inhibitory activity on basophil and mast cell activation. The lab also studies counter-regulation between the IgE and innate immune receptors on human immature dendritic cell subtypes. view more

    Research Areas: cell biology, allergies, inflammation
  • John Ulatowski Lab

    Lab Website

    Research in the John Ulatowski Lab explores the regulatory mechanisms of oxygen delivery to the... brain and cerebral blood flow. Our work includes developing and applying new techniques and therapies for stroke as well as non-invasive techniques for monitoring brain function, fluid management and sedation in brain injury patients. We also examine the use of novel oxygen carriers in blood. We’ve recently begun exploring new methods for perioperative and periprocedural care that would help to optimize patient safety in the future. view more

    Research Areas: cerebrovascular, brain, stroke, oxygen, blood
  • Jun Hua Lab

    Lab Website

    Dr. Hua's research has centered on the development of novel MRI technologies for in vivo functi...onal and physiological imaging in the brain, and the application of such methods for studies in healthy and diseased brains. These include the development of human and animal MRI methods to measure functional brain activities, cerebral perfusion and oxygen metabolism at high (3 Tesla) and ultra-high (7 Tesla and above) magnetic fields. He is particularly interested in novel MRI approaches to image small blood and lymphatic vessels in the brain. Collaborating with clinical investigators, these techniques have been applied 1) to detect functional, vascular and metabolic abnormalities in the brain in neurodegenerative diseases such as Huntingdon's disease (HD), Parkinson's disease (PD), Alzheimer's disease (AD) and mental disorders such as schizophrenia; and 2) to map brain functions and cerebrovascular reactivity for presurgical planning in patients with vascular malformations, brain tumors and epilepsy. view more

    Research Areas: imaging technology development, applications in brain diseases
  • Komatsu Lab

    Malfunction and malformation of blood vessels are associated with a broad range of medical cond...itions, including cancer, cardiovascular diseases, and neurological disorders. The ultimate goal of the Komatsu lab is to find a way to reverse the process of abnormal vessel formation and restore normal function to these vessels. In cancer, normalization of tumor blood vessels facilitates lymphocyte infiltration, potentiating anti-tumor immunity, and enhances the efficacy of immunotherapies as well as conventional cancer treatments. Normalization of regenerating blood vessels is also necessary for reestablishing blood flow to ischemic hearts and limbs, and preventing blindness caused by diabetic retinopathy or macular degeneration. Komatsu lab’s research is uncovering key molecular pathways important for the normalization of pathological vasculature. view more

    Research Areas: Tertiary lymphoid structure (TLS) in cancer, Drug targeting, High endothelial venules and their role in lymphocyte recruitment, Vascular normalization
  • Linda Smith-Resar Lab

    Lab Website
    Principal Investigator:
    Linda Smith Resar, M.D.
    Medicine

    The Linda Smith-Resar Lab primarily investigates hematologic malignancy and molecular mechanism...s that lead to cancer as well as sickle cell anemia. Recent studies suggest that education is an important and effective component of a patient blood management program and that computerized provider order entry algorithms may serve to maintain compliance with evidence-based transfusion guidelines. Another recent study indicated that colonic epithelial cells undergo metabolic reprogramming during their evolution to colorectal cancer, and the distinct metabolites could serve as diagnostic tools or potential targets in therapy or primary prevention. view more

    Research Areas: blood disorders, sickle cell diseases, blood management programs, hematologic malignancies
  • Machine Biointerface Lab

    Lab Website

    Dr. Fridman's research group invents and develops bioelectronics for Neuroengineering and Medic...al Instrumentation applications. We develop innovative medical technology and we also conduct the necessary biological studies to understand how the technology could be effective and safe for people.

    Our lab is currently focused on developing the "Safe Direct Current Stimulation" technology, or SDCS. Unlike the currently available commercial neural prosthetic devices, such as cochlear implants, pacemakers, or Parkinson's deep brain stimulators that can only excite neurons, SDCS can excite, inhibit, and even sensitize them to input. This new technology opens a door to a wide range of applications that we are currently exploring along with device development: e.g. peripheral nerve stimulation for suppressing neuropathic pain, vestibular nerve stimulation to correct balance disorders, vagal nerve stimulation to suppress an asthma attack, and a host of other neuroprosthetic applications.

    Medical Instrumentation MouthLab is a "tricorder" device that we invented here in the Machine Biointerface Lab. The device currently obtains all vital signs within 60s: Pulse rate, breathing rate, temperature, blood pressure, blood oxygen saturation, electrocardiogram, and FEV1 (lung function) measurement. Because the device is in the mouth, it has access to saliva and to breath and we are focused now on expanding its capability to obtaining measures of dehydration and biomarkers that could be indicative of a wide range of internal disorders ranging from stress to kidney failure and even lung cancer.
    view more

    Research Areas: medical instruments, bioelectricities, neuroengineering, nerve stimulation
  • Mark Levis Laboratory

    Lab Website
    Principal Investigator:
    Mark Levis, M.D., Ph.D.
    Medicine
    Oncology

    Our broad research goals are to identify and validate novel molecular therapeutic targets in he...matopoietic malignancies. We are interested in the identification and pre-clinical development of novel targeted therapies, and, in particular, the “translational” step of this research by using correlative studies to incorporate these novel therapies into existing treatments. Our research is of particular interest to those who wish to be involved in directly translating the results of laboratory bench work into meaningful benefits for patients.

    Currently, we are actively involved in the pre-clinical and clinical development of small molecule kinase inhibitors targeting the FLT3 signaling pathway in acute myeloid leukemia. We are interested in 3 compounds in particular- AC220, a FLT3/KIT inhibitor; crenolanib,a selective FLT3 inhibitor with activity against resistant point mutations; and PLX3397, another inhibitor of KIT and FLT3. The active projects in the lab include:
    1) Characterization of cytotoxic responses of different hematologic malignancies to FLT3 and KIT kinase inhibition; 2) Examination of the interaction of bone marrow stroma and stroma-derived cytokines on the efficacy of these inhibitors; 3) Examination of the differential effect of FLT3 inhibition versus combined FLT3/KIT inhibition on acute myeloid leukemia and bone marrow progenitor cells; and 4) Correlative laboratory studies using blood and marrow samples from patients treated with FLT3 inhibitors, with the aim of developing predictive models for clinical response.
    view more

    Research Areas: leukemia
  • Nicholas Flavahan Lab

    Lab Website

    The Nicholas Flavahan Lab primarily researches the cellular interactions and subcellular signal...ing pathways that control normal vascular function and regulate the initiation of vascular disease. We use biochemical and molecular analyses of cellular mediators and cell signaling mechanisms in cultured vascular cells, while also conducting physiological assessments and fluorescent microscopic imaging of signaling systems in isolated blood vessels. A major component of our research involves aterioles, tiny blood vessles that are responsible for controlling the peripheral resistance of the cardiovascular system, which help determine organ blood flow. view more

    Research Areas: biochemistry, Raynaud's phenomenon, vascular biology, vasospasms
  1. 1
  2. 2
  3. 3
  4. 4
Create lab profile
Edit lab profile
back to top button