Skip Navigation

Find a Research Lab

Research Lab Results for biomarkers

Displaying 11 to 20 of 30 results
Results per page:
  • GI Early Detection Biomarkers Lab

    Principal Investigator:
    Stephen Meltzer, M.D.
    Medicine

    Dr. Meltzer is an internationally renowned leader in the molecular pathobiology of gastrointest...inal malignancy and premalignancy. He invented molecular methods to detect loss of heterozygosity in tiny biopsies, triggering an avalanche of research on precancerous lesions. He was the first to comprehensively study coding region microsatellite instability, leading to the identification of several important tumor suppressor genes. He performed several groundbreaking genomic, epigenomic and bioinformatic studies of esophageal and colonic neoplasms, shifting the GI research paradigm toward genome-wide approaches. He directed an ambitious nationwide validation study of DNA methylation-based biomarkers for the prediction of neoplastic progression in Barrett’s esophagus.

    Dr. Meltzer founded and led the Aerodigestive Cancer and Biomarker Interdisciplinary Programs at the University of Maryland, also becoming associate director for core sciences at that school’s Cancer Center. He currently holds an endowed professorship and is the director of GI biomarker research at Johns Hopkins.

    The laboratory group focuses its efforts on the molecular genetics of gastrointestinal cancers and premalignant lesions, as well as on translational research to improve early detection, prognostic evaluation, and treatment of these conditions. Below, some examples of this work are described.
    view more

    Research Areas: gastrointestinal cancer, gastrointestinal
  • Haughey Lab: Neurodegenerative and Neuroinfectious Disease

    Lab Website
    Principal Investigator:
    Norman Haughey, Ph.D.
    Neurology
    Neurosurgery

    Dr. Haughey directs a disease-oriented research program that address questions in basic neurobi...ology, and clinical neurology. The primary research interests of the laboratory are:

    1. To identify biomarkers markers for neurodegenerative diseases including HIV-Associated Neurocognitive Disorders, Multiple Sclerosis, and Alzheimer’s disease. In these studies, blood and cerebral spinal fluid samples obtained from ongoing clinical studies are analyzed for metabolic profiles through a variety of biochemical, mass spectrometry and bioinformatic techniques. These biomarkers can then be used in the diagnosis of disease, as prognostic indicators to predict disease trajectory, or as surrogate markers to track the effectiveness of disease modifying interventions.
    2. To better understand how the lipid components of neuronal, and glial membranes interact with proteins to regulate signal transduction associated with differentiation, motility, inflammatory signaling, survival, and neuronal excitability.
    3. To understand how extracellular vesicles (exosomes) released from brain resident cells regulate neuronal excitability, neural network activity, and peripheral immune responses to central nervous system damage and infections.
    4. To develop small molecule therapeutics that regulate lipid metabolism as a neuroprotective and restorative strategy for neurodegenerative conditions.
    view more

    Research Areas: multiple sclerosis, PTSD, HAND, HIV
  • Heng Zhu Lab

    Lab Website

    The Zhu lab is focused on characterizing the activities of large collection of proteins, buildi...ng signaling networks for better understanding the mechanisms of biological processes, and identifying biomarkers in human diseases and cancers. More specifically, our group is interested in analyzing protein posttranslational modifications, and identifying important components involved in transcription networks and host-pathogen interactions on the proteomics level, and biomarkers in human IBD diseases. view more

    Research Areas: inflammatory bowel disease, biomarkers, cancer
  • IBD and Autoimmune Liver Diseases Laboratory

    Principal Investigator:
    Xu Li, Ph.D.
    Medicine

    Investigators in the IBD and Autoimmune Liver Diseases Laboratory conduct basic and translation...al research in inflammatory bowel disease (IBD) and autoimmune liver diseases. One area of focus is discovering and developing biomarkers for diagnosing and prognosticating IBD and other autoimmune liver diseases (AILDs). We also are exploring the molecular pathogenesis of—and developing novel therapies for—IBD. In addition, we are working to understand the molecular reason why many IBD patients fail to respond to mainstay drug therapies—and to develop diagnostic assays that can predict non-responders before starting them on those therapies. These biomarker studies have led to our application for four U.S. and international patents. view more

    Research Areas: inflammatory bowel disease, Crohn’s disease, gastrointestinal system, colitis, autoimmune diseases, pathogenesis, celiac disease, liver diseases
  • James Hamilton Lab

    Principal Investigator:
    James Hamilton, M.D.
    Medicine

    The main research interests of the James Hamilton Lab are the molecular pathogenesis of hepatoc...ellular carcinoma and the development of molecular markers to help diagnose and manage cancer of the liver. In addition, we are investigating biomarkers for early diagnosis, prognosis and response to various treatment modalities. Results of this study will provide a molecular classification of HCC and allow us to identify targets for chemoprevention and treatment. Specifically, we extract genomic DNA and total RNA from liver tissues and use this genetic material for methylation-specific PCR (MSP), cDNA microarray, microRNA microarray and genomic DNA methylation array experiments. view more

    Research Areas: Copper homeostasis, Wilson's disease, cancer, molecular genetics, Early detection biomarker discovery for hepatocellular carcinoma, genomics, pathogenesis, liver injury, liver diseases, regulation of lipid metabolism, hepatocellular carcinoma, Pathogenesis of Liver fibrosis and cancer
  • Jean Kim Lab

    The Jean Kim Laboratory performs translational research in the
    area of chronic rhinosinusitis,... with a niche interest in the pathogenesis of hyperplastic nasal
    polyposis. Studies encompass clinical research to basic wet laboratory research in
    studying the underlying immune and autoimmune mediated mechanism of polyp growth and
    perpetuation of disease. Human cell and tissue culture models are used. Techniques in the
    laboratory include cell and tissue culture, real time PCR, immunoblot, ELISA, flow cytometry,
    immunohistochemistry, electron microscopy, gene array analysis, and other molecular
    approaches including genetic knockdowns. Approaches used in Dr. Kim’s clinical study
    designs include prospective and retrospective analysis of patient outcomes and clinical
    biomarkers, as wells controlled clinical trials.
    view more

    Research Areas: nasal polyps, chronic rhinosinusitis, hyperplastic nasal polyposis
  • John Aucott Lab

    Principal Investigator:
    John Aucott, M.D.
    Medicine

    Research in the John Aucott Lab focuses on the development of accurate diagnostic tests for all... stages of Lyme disease. We work closely with Dr. Mark Soloski on the Study of Lyme disease Immunology and Clinical Events (SLICE), a longitudinal, matched-control study of patients diagnosed with early untreated Lyme disease. The objective is to use the collected biological samples to help identify novel Lyme disease biomarkers that can inform diagnoses, outcomes and the knowledge about disease pathophysiology. view more

    Research Areas: clinical outcomes, gender differences, biomarkers, pathophysiology, immune heterogeneity, Lyme disease
  • Laura Hummers Lab

    Lab Website
    Principal Investigator:
    Laura Hummers, M.D.
    Medicine

    The Laura Hummers Lab participates in a number of clinical trials and clinical investigations a...t the Scleroderma Center at Johns Hopkins. We have a particular interest in the predictors of outcomes in scleroderma. We’ve established a prospective cohort of 300 scleroderma patients to identify incident vascular outcomes in the hopes of identifying new biomarkers for disease development and progression. view more

    Research Areas: rheumatology, biomarkers, scleroderma
  • Livia Casciola-Rosen Lab

    Principal Investigator:
    Livia Casciola-Rosen, Ph.D.
    Medicine

    Work in the Livia Casciola-Rosen Lab explores the shared mechanisms present in autoimmune rheum...atic diseases, specifically scleroderma, Sjogren's syndrome and myositis. We use disease-specific autoantibodies to identify the factors that cause the autoimmune response in such diseases. Our current research involves identifying the antigen targets of autoimmune diseases, investigating the autoantigens targeted in cancers associated with rheumatic diseases and finding unique clinical biomarkers, such as the anti-HMGCR antibody specificity. view more

    Research Areas: autoantibodies, myositis, rheumatology, Sjogren's syndrome, scleroderma, autoimmune rheumatic diseases
  • Machine Biointerface Lab

    Lab Website

    Dr. Fridman's research group invents and develops bioelectronics for Neuroengineering and Medic...al Instrumentation applications. We develop innovative medical technology and we also conduct the necessary biological studies to understand how the technology could be effective and safe for people.

    Our lab is currently focused on developing the "Safe Direct Current Stimulation" technology, or SDCS. Unlike the currently available commercial neural prosthetic devices, such as cochlear implants, pacemakers, or Parkinson's deep brain stimulators that can only excite neurons, SDCS can excite, inhibit, and even sensitize them to input. This new technology opens a door to a wide range of applications that we are currently exploring along with device development: e.g. peripheral nerve stimulation for suppressing neuropathic pain, vestibular nerve stimulation to correct balance disorders, vagal nerve stimulation to suppress an asthma attack, and a host of other neuroprosthetic applications.

    Medical Instrumentation MouthLab is a "tricorder" device that we invented here in the Machine Biointerface Lab. The device currently obtains all vital signs within 60s: Pulse rate, breathing rate, temperature, blood pressure, blood oxygen saturation, electrocardiogram, and FEV1 (lung function) measurement. Because the device is in the mouth, it has access to saliva and to breath and we are focused now on expanding its capability to obtaining measures of dehydration and biomarkers that could be indicative of a wide range of internal disorders ranging from stress to kidney failure and even lung cancer.
    view more

    Research Areas: medical instruments, bioelectricities, neuroengineering, nerve stimulation
  1. 1
  2. 2
  3. 3
Create lab profile
Edit lab profile
back to top button