Find a Research Lab

Enter a research interest, principal investigator or keyword

Displaying 101 to 123 of 123 results for biology

Show: 10 · 20 · 50

  1. 1
  2. 2
  3. 3
  • Stuart C. Ray Lab

    Chronic viral hepatitis (due to HBV and HCV) is a major cause of liver disease worldwide, and an increasing cause of death in persons living with HIV/AIDS. Our laboratory studies are aimed at better defining the host-pathogen interactions in these infections, with particular focus on humoral and cellular immune responses, viral evasion, inflammation, fibrosis progression, and drug resistance. We are engaged in synthetic biology approaches to rational vaccine development and understanding the limits on the extraordinary genetic variability of HCV.

    Research Areas: immunology, Hepatitis, AIDS, HIV, hepatitis B, hepatitis C, liver diseases, synthetic biology

    Lab Website

    Principal Investigator

    Stuart Ray, M.D.

    Department

    Medicine

  • Susan Michaelis Lab

    The Michaelis Laboratory's research goal is to dissect fundamental cellular processes relevant to human health and disease, using yeast and mammalian cell biology, biochemistry and high-throughput genomic approaches. Our team studies the cell biology of lamin A and its role in the premature aging disease Hutchinson-Gilford progeria syndrome (HGPS). Other research focuses on the core cellular machinery involved in recognition of misfolded proteins. Understanding cellular protein quality control machinery will ultimately help researchers devise treatments for protein misfolding diseases in which degradation is too efficient or not enough.

    Research Areas: biochemistry, cell biology, protein folding, lamin A, aging, genomics, Hutchinson-Gilford progeria syndrome, yeast

    Principal Investigator

    Susan Michaelis, Ph.D.

    Department

    Cell Biology

  • Svetlana Lutsenko Laboratory

    The research in the Svetlana Lutsenko Laboratory is focused on the molecular mechanisms that regulate copper concentration in normal and diseased human cells. Copper is essential for human cell homeostasis. It is required for embryonic development and neuronal function, and the disruption of copper transport in human cells results in severe multisystem disorders, such as Menkes disease and Wilson's disease. To understand the molecular mechanisms of copper homeostasis in normal and diseased human cells, we utilize a multidisciplinary approach involving biochemical and biophysical studies of molecules involved in copper transport, cell biological studies of copper signaling, and analysis of copper-induced pathologies using Wilson's disease gene knock-out mice.

    Research Areas: biophysics, biochemistry, menkes disease, Wilson's disease, cell biology, multisystem disorders, physiology, copper, molecular biology

    Lab Website

    Principal Investigator

    Svetlana Lutsenko, Ph.D.

    Department

    Physiology

  • Systems Biology Laboratory

    The Systems Biology Lab applies methods of multiscale modeling to problems of cancer and cardiovascular disease, and examines the systems biology of angiogenesis, breast cancer and peripheral artery disease (PAD).

    Using coordinated computational and experimental approaches, the lab studies the mechanisms of breast cancer tumor growth and metastasis to find ways to inhibit those processes.

    We use bioinformatics to discover novel agents that affect angiogenesis and perform in vitro and in vivo experiments to test these predictions. In addition we study protein networks that determine processes of angiogenesis, arteriogenesis and inflammation in PAD. The lab also investigates drug repurposing for potential applications as stimulators of therapeutic angiogenesis, examines signal transduction pathways and builds 3D models of angiogenesis.

    The lab has discovered over a hundred novel anti-angiogenic peptides, and has undertaken in vitro and in vivo studies testing their activity unde...r different conditions. We have investigated structure-activity relationship (SAR) doing point mutations and amino acid substitutions and constructed biomimetic peptides derived from their endogenous progenitors. They have demonstrated the efficacy of selected peptides in mouse models of breast, lung and brain cancers, and in age-related macular degeneration.

    view more

    Research Areas: peripheral artery disease, breast cancer, systems biology, computational biology, cancer, cardiovascular, age-related macular degeneration, bioinformatics, angiogenesis, microcirculation

    Principal Investigator

    Aleksander Popel, Ph.D.

    Department

    Biomedical Engineering

  • Systems Neurobiology Laboratory

    The Systems neurobiology Laboratory is a group of laboratories that all study various aspects of neurobiology. These laboratories include: (1) computational neurobiology Laboratory: The goal of their research is to build bridges between brain levels from the biophysical properties of synapses to the function of neural systems. (2) computational Principles of Natural Sensory Processing: Research in this lab focuses on the computational principles of how the brain processes information. (3) Laboratory for Cognitive neuroscience: This laboratory studies the neural and genetic underpinnings of language and cognition. (4) Sloan-Swartz Center for Theoretical neurobiology: The goal of this laboratory is develop a theoretical infrastructure for modern experimental neurobiology. (5) Organization and development of visual cortex: This laboratory is studying the organization and function of neural circuits in the visual cortex to understand how specific neural components enable visual perception ...and to elucidate the basic neural mechanisms that underlie cortical function. (6) Neural mechanism of selective visual attention: This laboratory studies the neural mechanisms of selective visual attention at the level of the individual neuron and cortical circuit, and relates these findings to perception and conscious awareness. (7) Neural basis of vision: This laboratory studies how sensory signals in the brain become integrated to form neuronal representation of the objects that people see. view more

    Research Areas: cognition, systems biology, brain, vision, neuroscience, perception

  • Tamara O'Connor Lab

    The O'Connor Lab studies the molecular basis of infectious disease using Legionella pneumophila pathogenesis as a model system.

    We are looking at the network of molecular interactions acting at the host-pathogen interface. Specifically, we use L. pneumophila pathogenesis to examine the numerous mechanisms by which an intracellular bacterial pathogen can establish infection, how it exploits host cell machinery to accomplish this, and how individual proteins and their component pathways coordinately contribute to disease.

    We are also studying the role of environmental hosts in the evolution of human pathogens. Using genetics and functional genomics, we compare and contrast the repertoires of virulence proteins required for growth in a broad assortment of hosts, how the network of molecular interactions differs between hosts, and the mechanisms by which L. pneumophila copes with this variation.

    Research Areas: infectious disease, Legionella pneumophila, genomics, pathogenesis, molecular biology

    Principal Investigator

    Tamara O'Connor, Ph.D.

    Department

    Biological Chemistry

  • The Hackam Lab for Pediatric Surgical, Translational and Regenerative Medicine

    David Hackam’s laboratory focuses on necrotizing enterocolitis (NEC), a devastating disease of premature infants and the leading cause of death and disability from gastrointestinal disease in newborns.

    The disease strikes acutely and without warning, causing sudden death of the small and large intestines. In severe cases, tiny patients with the disease are either dying or dead from overwhelming sepsis within 24 hours. Surgical treatment to remove most of the affected gut results in lifelong short gut (short bowel) syndrome.

    The Hackam Lab has identified a critical role for the innate immune receptor toll-like receptor 4 (TLR4) in the pathogenesis of necrotizing enterocolitis. The lab has shown that TLR4 regulates the development of the disease by tipping the balance between injury and repair in the stressed intestine of the premature infant. Developing an Artificial Intestine A key goal is to create, in the laboratory, new intestines made from patients’ own cells, which can then ...be implanted into the patient to restore normal digestive function. This innovative design could transform child development and quality of life in necrotizing enterocolitis survivors without the risks of conventional donor transplant. view more

    Research Areas: necrotizing enterocolitis, gut inflammation, stem cell biology, premature infants, TLR4

    Lab Website

    Principal Investigator

    David Hackam, M.D., Ph.D.

    Department

    Pediatrics
    Surgery

  • The Nauen Lab

    Epilepsy affects 1-3% of the population and can have a profound impact on general health, employment and quality of life. Medial temporal lobe epilepsy (MTLE) develops in some patients following head injury or repeated febrile seizures. Those affected may first suffer spontaneous seizures many years after the initial insult, indicating that the neural circuit undergoes a slow pathologic remodeling over the interim. There are currently no methods of preventing the development of MTLE. It is our goal to better understand the process in order to slow, halt, and ultimately reverse it.

    Our laboratory draws on electrophysiology, molecular biology, and morphology to study the contribution of dysregulated neurogenesis and newborn neuron connectivity to the development of MTLE. We build on basic research in stem cell biology, hippocampal development, and synaptic plasticity. We work closely with colleagues in the Institute for Cell Engineering, Neurology, Neurosurgery, Biomedical Engineering..., and Radiology. As physician neuropathologists our grounding is in tissue alterations underlying human neurologic disease; using human iPSC-derived neurons and surgical specimens we focus on the pathophysiological processes as they occur in patients.

    By understanding changes in cell populations and morphologies that affect the circuit, and identifying pathologic alterations in gene expression that lead to the cell-level abnormalities, we hope to find treatment targets that can prevent the remodeling and break the feedback loop of abnormal activity > circuit change > abnormal activity.
    view more

    Research Areas: Medial temporal lobe epilepsy

    Lab Website

    Principal Investigator

    David Nauen, M.D., Ph.D.

    Department

    Pathology

  • The Pathak Lab

    The Pathak lab is within the Division of Cancer Imaging Research in the Department of Radiology and Radiological Science. We develop novel imaging methods, computational models and visualization tools to ‘make visible’ critical aspects of cancer, stroke and neurobiology. Our research broadly encompasses the following areas: Functional and Molecular Imaging; Clinical Biomarker Development; Image-based Systems Biology and Visualization and Computational Tools. We are dedicated to mentoring the next generation of imagers, biomedical engineers and visualizers. Additional information can be found at www.pathaklab.org or by emailing Dr. Pathak.

    Research Areas: microscopy, vasculature, tumors, systems biology, functional magnetic resonance imaging, 3D imaging, biomarkers, optical imaging, angiogenesis, cancer imaging

  • Theresa Shapiro Laboratory

    The Theresa Shapiro Laboratory studies antiparasitic chemotherapy. On a molecular basis, we are interested in understanding the mechanism of action for existing antiparasitic agents, and in identifying vulnerable metabolic targets for much-needed, new, antiparasitic chemotherapy. Clinically, our studies are directed toward an evaluation, in humans, of the efficacy, pharmacokinetics, metabolism and safety of experimental antiparasitic drugs.

    Research Areas: sleeping sickness, infectious disease, drugs, malaria, pharmacology, antiparasitic chemotherapy, molecular biology

    Principal Investigator

    Theresa Shapiro, M.D., Ph.D.

    Department

    Medicine

  • Translational Neurobiology Laboratory

    The goals of the Translational neurobiology Laboratory are to understand the pathogenesis and cell death pathways in neurodegenerative disorders to reveal potential therapeutic targets for pharmaceutical intervention; to investigate endogenous survival pathways and try to induce these pathways to restore full function or replace lost neurons; and to identify biomarkers to mark disease function or replace lost neurons; and to identify biomarkers to mark disease progression and evaluate therapeutics. Our research projects focus on models of Huntington's disease and Parkinson's disease. We use a combination of cell biology and transgenic animal models of these diseases.

    Research Areas: Huntington's disease, neurodegenerative disorders, neurobiology, cell biology, Parkinson's disease

  • Venkataramana Sidhaye Lab

    We are interested in basic and translational studies looking at the effects of environmental exposures, including cigarette smoke and electronic cigarettes, on lung epithelial function. We are focused on mechanisms to reverse injury to promote lung health, primarily in the context of Chronic Obstructive Pulmonary Disease (COPD).

    Research Areas: pulmonary medicine, epithelial cells, biology, aquaporins

    Lab Website

    Principal Investigator

    Venkataramana Sidhaye, M.D.

    Department

    Medicine

  • Venu Raman Research Lab

    The Raman laboratory is within the Division of Cancer Imaging Research in the Department of Radiology and Radiological Science. The focus of the laboratory is bench-to-bed side cancer research. We integrate molecular and cellular biology, developmental biology, cancer biology, molecular imaging techniques to study cancer formation and progression. Many of the projects in the lab investigate dysregulated genes in cancer and the translatability of this information to a clinical setting. One such project is to functionally decipher the role of a RNA helicase gene, DDX3, in the biogenesis of multiple cancer types such as breast, lung, brain, sarcoma, colorectal and prostate. Additionally, using a rational drug design approach, a small molecule inhibitor of DDX3 (RK-33) was synthesized and its potential for clinical translation is being investigated.

    Research Areas: breast cancer, cancer, in vitro findings, molecule inhibitors

    Principal Investigator

    Venu Raman, Ph.D.

    Department

    Radiology and Radiological Science

  • Wei Dong Gao Lab

    Work in the Wei Dong Gao Lab primarily focuses on heart failure and defining molecular and cellular mechanisms of contractile dysfunction. We use molecular biology and proteomic techniques to investigate the changes that myofilament proteins undergo during heart failure and under drug therapy. We're working to determine the molecular nature of nitroxyl (HNO) modification of tropomyosin.

    Research Areas: heart disease, contractile dysfunction, heart failure, cardiovascular diseases, molecular biology

  • Welling Laboratory

    Dr. Paul A. Welling and his research team explore the genetic and molecular underpinnings of electrolyte physiology, potassium balance disorders, hypertension and kidney disease. A thrust of current research activity is devoted to understanding how faulty genes and environmental stresses drive hypertension. The research is providing new insights into how the western diet triggers deleterious responses of salt-sensitivity genes. The Welling laboratory employs a multidisciplinary approach, spanning from gene discovery, molecular biology, genetically engineered mouse models to translational studies in humans. By illuminating pathophysiological mechanisms and translating the discoveries to develop more effective diagnostic and therapeutic strategies, Welling’s group is striving to improve the health of at-risk individuals and patients with kidney disease and hypertension. Dr. Welling is the Joseph S. and Esther Hander Professor of Laboratory Research in Nephrology. More about his research ...can be found at wellinglab.com. view more

    Research Areas: genetic and molecular underpinnings of electrolyte physiology, kidney diseases, hypertension, potassium balance disorders

    Lab Website

    Principal Investigator

    Paul Welling, M.D.

    Department

    Medicine

  • Wheelan Lab

    The Wheelan Lab focuses on DNA sequence analysis. Her team creates new techniques to mathematically analyze and biologically interpret high-throughput sequencing data and other high-dimensional biological datasets. The team examines spatial relationships across genomes and uses transposons to query genomic sequence/structure relationships.

    Research Areas: computational biology, DNA, genomics, sequencing

    Principal Investigator

    Sarah Wheelan, M.D., Ph.D.

    Department

    Oncology

  • William Agnew Laboratory

    The Agnew Laboratory examines the structure, mechanism and regulation of ion channels that mediate the action potential in nerve and muscle, as well as intracellular calcium concentrations. Much of our work has centered on voltage-activated sodium channels responsible for the inward currents of the action potential. These studies encompass biochemical, molecular biological and biophysical studies of Na channel structure, gating and conductance mechanisms, the stages of channel biosynthesis and assembly, and mechanisms linked to channel neuromodulation.

    In recent molecular cloning and expression studies, we have characterized mutations in the human muscle sodium channel that appear to underlie certain inherited myopathies. New studies being pursued in our group also address the questions of structure, receptor properties, and biophysical behavior of intracellular calcium release channels activated by inositol-1,4,5-triphosphate. These channels are expressed at extremely high levels ...in selected cells of the central nervous system, and may play a role in modulating neuronal excitability. view more

    Research Areas: central nervous system, neuronal excitability, biophysiology, biochemistry, sodium channels, ion channels, molecular biology

    Principal Investigator

    William Agnew, Ph.D.

    Department

    Physiology

  • William B. Guggino Lab

    Work in the William B. Guggino Lab focuses on the structure of the cystic fibrosis transmembrane conductance regulator (CFTR) and water channels; the molecular structure of transport proteins in epithelial cell membranes; and gene therapies to treat cystic fibrosis (CF) patients. We are also working to identify CF’s specific defect in chloride channel regulation. One recent study showed that insulin-like growth factor 1 (IGF-1) enhances the protein expression of CFTR.

    Research Areas: cell biology, cystic fibrosis, kidney diseases, gene therapy, ion channels

    Lab Website

    Principal Investigator

    William Guggino, Ph.D.

    Department

    Physiology

  • William B. Isaacs Laboratory

    Prostate cancer is the most commonly diagnosed malignancy in men in the United States, although our understanding of the molecular basis for this disease remains incomplete. We are interested in characterizing consistent alterations in the structure and expression of the genome of human prostate cancer cells as a means of identifying genes critical in the pathways of prostatic carcinogenesis.

    We are focusing on somatic genomic alterations occurring in sporadic prostate cancers, as well as germline variations which confer increases in prostate cancer risk. Both genome wide and candidate gene approaches are being pursued, and cancer associated changes in gene expression analyses of normal and malignant prostate cells are being cataloged as a complementary approach in these efforts.

    It is anticipated that this work will assist in providing more effective methodologies to identify men at high risk for this disease, in general, and in particular, to identify new markers of prognostic... and therapeutic significance that could lead to more effective management of this common disease. view more

    Research Areas: cell biology, prostate cancer, molecular genetics

    Lab Website

    Principal Investigator

    William Isaacs, Ph.D.

    Department

    Urology

  • William G. Nelson Laboratory

    Normal and neoplastic cells respond to genome integrity threats in a variety of different ways. Furthermore, the nature of these responses are critical both for cancer pathogenesis and for cancer treatment. DNA damaging agents activate several signal transduction pathways in damaged cells which trigger cell fate decisions such as proliferation, genomic repair, differentiation, and cell death. For normal cells, failure of a DNA damaging agent (i.e., a carcinogen) to activate processes culminating in DNA repair or in cell death might promote neoplastic transformation. For cancer cells, failure of a DNA damaging agent (i.e., an antineoplastic drug) to promote differentiation or cell death might undermine cancer treatment.

    Our laboratory has discovered the most common known somatic genome alteration in human prostatic carcinoma cells. The DNA lesion, hypermethylation of deoxycytidine nucleotides in the promoter of a carcinogen-defense enzyme gene, appears to result in inactivation of th...e gene and a resultant increased vulnerability of prostatic cells to carcinogens.
    Studies underway in the laboratory have been directed at characterizing the genomic abnormality further, and at developing methods to restore expression of epigenetically silenced genes and/or to augment expression of other carcinogen-defense enzymes in prostate cells as prostate cancer prevention strategies.

    Another major interest pursued in the laboratory is the role of chronic or recurrent inflammation as a cause of prostate cancer. Genetic studies of familial prostate cancer have identified defects in genes regulating host inflammatory responses to infections.
    A newly described prostate lesion, proliferative inflammatory atrophy (PIA), appears to be an early prostate cancer precursor. Current experimental approaches feature induction of chronic prostate inflammation in laboratory mice and rats, and monitoring the consequences on the development of PIA and prostate cancer.
    view more

    Research Areas: cellular biology, cancer, epigenetics, DNA

    Lab Website

    Principal Investigator

    William Nelson, M.D., Ph.D.

    Department

    Oncology

  • Xiao Group

    The objective of the Xiao Group's research is to study the dynamics of cellular processes as they occur in real time at the single-molecule and single-cell level. The depth and breadth of our research requires an interdisciplinary approach, combining biological, biochemical and biophysical methods to address compelling biological problems quantitatively. We currently are focused on dynamics of the E. coli cell division complex assembly and the molecular mechanism in gene regulation.

    Research Areas: biophysics, biochemistry, E. coli, cell biology, genomics, molecular biology

  • Yarema Laboratory

    The Yarema Lab uses chemical biology, molecular and cell biology, and materials science methods to study and manipulate glycosylation. The goal of our research is to better understand human disease while furthering carbohydrate-based therapies. Our laboratory's research goals are to (1) Develop sugar analogs into viable and versatile drug candidates, (2) Apply metabolic glycoengineering to tissue engineering and stem cell research, (3) Use non-invasive magnetic stimuli to probe the effects of glycoengineering (and also to treat neurological disorders), and (4) Extend our sugar-based drug candidates into animal models and the clinic

    Research Areas: carbohydrate-based therapies, chemical biology, stem cells, cell biology, materials science, neurological disorders, molecular biology

    Lab Website

    Principal Investigator

    Kevin Yarema, Ph.D.

    Department

    Biomedical Engineering

  • Zack Wang Lab

    The Wang lab focuses on the signals that direct the differentiation of pluripotent stem cells, such as induced-pluripotent stem (iPS) cells, into hematopoietic and cardiovascular cells. Pluripotent stem cells hold great potential for regenerative medicine. Defining the molecular links between differentiation outcomes will provide important information for designing rational methods of stem cell manipulation.

    Research Areas: pluripotent stem cells, stem cells, molecular genetics, stem cell biology, gene therapy

    Principal Investigator

    Zack Wang, Ph.D.

    Department

    Medicine

  1. 1
  2. 2
  3. 3