Find a Research Lab

Enter a research interest, principal investigator or keyword

Displaying 1 to 50 of 121 results for biology

Show: 10 · 20 · 50

  1. 1
  2. 2
  3. 3
  • Advanced Optics Lab

    The Advanced Optics Lab uses innovative optical tools, including laser-based nanotechnologies, to understand cell motility and the regulation of cell shape. We pioneered laser-based nanotechnologies, including optical tweezers, nanotracking, and laser-tracking microrheology. Applications range from physics, pharmaceutical delivery by phagocytosis (cell and tissue engineering), bacterial pathogens important in human disease and cell division.

    Other projects in the lab are related to microscopy, specifically combining fluorescence and electron microscopy to view images of the subcellular structure around proteins.

    Research Areas: optics, microscopy, physics, cellular biology, imaging, nanotechnology, drugs, tissue engineering

    Lab Website

    Principal Investigator

    Scot Kuo, Ph.D.

    Department

    Biomedical Engineering

  • Alain Labrique Lab

    The Alain Labrique Lab conducts research on infectious diseases and public health. Our team studies the various factors that lead to maternal and neonatal mortality, particularly in underserved populations in South Asia, using the tools of infectious disease epidemiology, molecular biology and biostatistics. We work to better understand factors such as the interface of micronutrient deficiency and maternal/infant mortality and the prevention of nosocomial infections through mechanistic or nutritional interventions. We also have a longstanding interest in technologies that may enable early detection of disease.

    Research Areas: epidemiology, mobile health, Hepatitis, neonatal, infectious disease, public health, biostatistics, nosocomial infections, molecular biology

  • Albert Lau Lab

    The Lau Lab uses a combination of computational and experimental approaches to study the atomic and molecular details governing the function of protein complexes involved in intercellular communication. We study ionotropic glutamate receptors (iGluRs), which are ligand-gated ion channels that mediate the majority of excitatory synaptic transmission in the central nervous system. iGluRs are important in synaptic plasticity, which underlies learning and memory. Receptor dysfunction has been implicated in a number of neurological disorders.

    Research Areas: central nervous system, synaptic plasticity, computational biology, intracellular communication, ionotropic glutamate receptors, neurological disorders

  • Anderson Lab

    Research in the Anderson laboratory focuses on cellular signaling and ionic mechanisms that cause heart failure, arrhythmias and sudden cardiac death, major public health problems worldwide. Primary focus is on the multifunctional Ca2+ and calmodulin-dependent protein kinase II (CaMKII). The laboratory identified CaMKII as an important pro-arrhythmic and pro-cardiomyopathic signal, and its studies have provided proof of concept evidence motivating active efforts in biotech and the pharmaceutical industry to develop therapeutic CaMKII inhibitory drugs to treat heart failure and arrhythmias.

    Under physiological conditions, CaMKII is important for excitation-contraction coupling and fight or flight increases in heart rate. However, myocardial CaMKII is excessively activated during disease conditions where it contributes to loss of intracellular Ca2+ homeostasis, membrane hyperexcitability, premature cell death, and hypertrophic and inflammatory transcription. These downstream targets a...ppear to contribute coordinately and decisively to heart failure and arrhythmias. Recently, researchers developed evidence that CaMKII also participates in asthma.

    Efforts at the laboratory, funded by grants from the National Institutes of Health, are highly collaborative and involve undergraduate assistants, graduate students, postdoctoral fellows and faculty. Key areas of focus are:
    • Ion channel biology and arrhythmias
    • Cardiac pacemaker physiology and disease
    • Molecular physiology of CaMKII
    • Myocardial and mitochondrial metabolism
    • CaMKII and reactive oxygen species in asthma

    Mark Anderson, MD, is the William Osler Professor of Medicine, the director of the Department of Medicine in the Johns Hopkins University School of Medicine and physician-in-chief of The Johns Hopkins Hospital.
    view less

    Research Areas: heart failure, arrhythmia, cardiovascular diseases, sudden cardiac death

    Lab Website

    Principal Investigator

    Mark Anderson, M.D., Ph.D.

    Department

    Medicine

  • Andrew Laboratory: Center for Cell Dynamics

    Researchers in the Center for Cell Dynamics study spatially and temporally regulated molecular events in living cells, tissues and organisms. The team develops and applies innovative biosensors and imaging techniques to monitor dozens of critical signaling pathways in real time. The new tools help them investigate the fundamental cellular behaviors that underlie embryonic development, wound healing, cancer progression, and functions of the immune and nervous systems.

    Research Areas: immunology, cancer, epithelial tube, nervous system, molecular biology

    Lab Website

    Principal Investigator

    Deborah Andrew, M.S., Ph.D.

    Department

    Cell Biology

  • Andrew Lane Lab

    The Lane laboratory is focused on understanding molecular mechanisms underlying chronic rhinosinusitis and particularly the pathogenesis of nasal polyps.  Diverse techniques in molecular biology, immunology, physiology, and engineering are utilized to study epithelial cell innate immunity, olfactory loss, the sinus microbiome, and drug delivery to the nose and sinus cavities. Ongoing work explores how epithelial cells participate in the immune response and contribute to chronic sinonasal inflammation. The lab creates and employs transgenic mouse models of chronic sinusitis to support research in this area. Collaborations are in place with the School of Public Health to explore mechanisms of anti-viral immunity in influenza and rhinovirus, and with the University of Maryland to characterize the bacterial microbiome of the nose and sinuses in health and disease.

    Research Areas: nasal polyps, olfaction, cell culture, transgenic mice, chronic rhinosinusitis, innate immunity, molecular biology

  • Andrew McCallion Laboratory

    The McCallion Laboratory studies the roles played by cis-regulatory elements (REs) in controlling the timing, location and levels of gene activation (transcription). Their immediate goal is to identify transcription factor binding sites (TFBS) combinations that can predict REs with cell-specific biological control--a first step in developing true regulatory lexicons.

    As a functional genetic laboratory, we develop and implement assays to rapidly determine the biological relevance of sequence elements within the human genome and the pathological relevance of variation therein. In recent years, we have developed a highly efficient reporter transgene system in zebrafish that can accurately evaluate the regulatory control of mammalian sequences, enabling characterization of reporter expression during development at a fraction of the cost of similar analyses in mice. We employ a range of strategies in model systems (zebrafish and mice), as well as analyses in the human population, to illu...minate the genetic basis of disease processes. Our long-term objective is to use these approaches in contributing to improved diagnostic, prognostic and therapeutic strategies in patient care. view more

    Research Areas: cell biology, genomics, gene regulation, nervous system

    Principal Investigator

    Andy McCallion, Ph.D.

    Department

    Molecular and Comparative Pathobiology

  • Beer Lab

    The goal of research in the Beer Lab is to understand how gene regulatory information is encoded in genomic DNA sequence. Our work uses functional genomics DNase-seq, ChIP-seq, RNA-seq, and chromatin state data to computationally identify combinations of transcription factor binding sites that operate to define the activity of cell-type specific enhancers. We are currently focused on improving SVM methodology by including more general sequence features and constraints predicting the impact of SNPs on enhancer activity (delta-SVM) and GWAS association for specific diseases, experimentally assessing the predicted impact of regulatory element mutation in mammalian cells, systematically determining regulatory element logic from ENCODE human and mouse data, and using this sequence based regulatory code to assess common modes of regulatory element evolution and variation.

    Research Areas: computational biology, biomedical engineering, DNA, genomics, RNA

  • Bioenergetics Core

    Mitochondrial dysfunction has long been a consistent observation in Parkinson's disease. To understand the consequences of Parkinson's disease causing genetic mutations on the function of mitochondria, the Bioenergetics Core B will provide the following analyses to the projects in the Udall Center at Johns Hopkins: (1) Measuring rates of respiration, oxygen consumption and ATP generation, (2) Measuring calcium dynamics, (3) Measuring reactive oxygen and reactive nitrogen species, (4) Measuring the activity of the electron transport chain enzymes and metabolic enzymes, and (5) Measuring plasma versus mitochondrial membrane potential and mitochondrial membrane permeability

    Research Areas: enzymes, cell biology, bioenergetics, respiration, Parkinson's disease, mitochondria, neurology

    Lab Website

    Principal Investigator

    Valina Dawson, Ph.D.

    Department

    Neurology

  • Borahay Lab: Uterine Fibroid Research

    Dr. Borahay's lab focuses on understanding pathobiology, developing novel treatments, and carrying out high quality clinical trials for common gynecologic problems with a special focus on uterine fibroids.

    Research Areas: uterine fibroids, endometriosis, stem cells, tumor biology, novel therapeutics, signaling pathways, Uterine biology, tissue engineering, uterine model

  • Brady Maher Laboratory

    The Brady Maher Laboratory is interested in understanding the cellular and circuit pathophysiology that underlies neurodevelopmental and psychiatric disorders. Our lab focuses on trying to understand the function of genes that are associated with neurodevelopment problems by manipulating their expression level in utero during the peak of cortical development. We then use a variety of approaches and technologies to identify resulting phenotypes and molecular mechanisms including cell and molecular biology, optogenetics, imaging and electrophysiology.

    Current projects in the lab are focused on understanding the function of transcription factor 4 (TCF4), a clinically pleiotropic gene. Genome-wide association studies have identified genetic variants of TCF4 that are associated with schizophrenia, while autosomal dominant mutations in TCF4 result in Pitt Hopkins syndrome. Using our model system, we have identified several interesting electrophysiological and cell biological phenotypes as...sociated with altering the expression of TCF4 in utero. We hypothesize that these phenotypes represent cellular pathophysiology related to these disorders and by understanding the molecular mechanisms responsible for these phenotypes we expect to identify therapeutic targets for drug development.
    view more

    Research Areas: cell biology, neurodevelopment, imaging, schizophrenia, psychiatric disorders, Pitt Hopkins syndrome, elecrophysiology, genomics, drugs, optogenetics, molecular biology, phenotypes

  • Brain Cancer Biology and Therapy Lab

    The goal of the Johns Hopkins Brain Cancer Biology and Therapy Laboratory is to locate the genetic and genomic changes that lead to brain cancer. These molecular changes are evaluated for their potential as therapeutic targets and are often mutated genes, or genes that are over-expressed during the development of a brain cancer. The brain cancers that the Riggins Laboratory studies are medulloblastomas and glioblastomas. Medulloblastomas are the most common malignant brain tumor for children and glioblastomas are the most common malignant brain tumor for adults. Both tumors are difficult to treat, and new therapies are urgently needed for these cancers. Our laboratory uses large-scale genomic approaches to locate and analyze the genes that are mutated during brain cancer development. The technologies we now employ are capable of searching nearly all of a cancer genome for molecular alterations that can lead to cancer. The new molecular targets for cancer therapy are first located by l...arge scale gene expression analysis, whole-genome scans for altered gene copy number and high throughput sequence analysis of cancer genomes. The alterations we find are then studied in-depth to determine how they contribute to the development of cancer, whether it is promoting tumor growth, enhancing the ability for the cancer to invade into normal tissue, or preventing the various fail-safe mechanisms programmed into our cells. view more

    Research Areas: brain cancer

    Lab Website

    Principal Investigator

    Gregory Riggins, M.D., Ph.D.

    Department

    Neurosurgery

  • Brendan Cormack Laboratory

    The Brendan Cormack Laboratory studies fungal pathogenesis, particularly the host-pathogen interaction for the yeast pathogen Candida glabrata.

    We are trying to identify virulence genes (genes that evolved in response to the host environment) by screening transposon mutants of C. glabrata for mutants that are specifically altered in adherence to epithelial cells, in survival in the presence of macrophages and PMNs. We also screen mutants directly in mice for those unable to colonize or persist in the normal target organs (liver, kidney and spleen).

    We also focus research on a family of genes--the EPA genes--that allow the organism to bind to host cells. Our research shows that a subset of them are able to mediate adherence to host epithelial cells. We are trying to understand the contribution of this family to virulence in C. glabrata by figuring out what the ligand specificity is of different family members, how genes are normally regulated during infection, and what mechanism...s normally act to keep the genes transcriptionally silent and how that silence is regulated. view more

    Research Areas: candida glabrata, pathogenesis, virulence genes, yeast, molecular biology

    Principal Investigator

    Brendan Cormack, Ph.D.

    Department

    Molecular Biology and Genetics

  • Cammarato Lab

    The Cammarato Lab is located in the Division of Cardiology in the Department of Medicine at the Johns Hopkins University School of Medicine. We are interested in basic mechanisms of striated muscle biology.

    We employ an array of imaging techniques to study “structural physiology” of cardiac and skeletal muscle. Drosophila melanogaster, the fruit fly, expresses both forms of striated muscle and benefits greatly from powerful genetic tools. We investigate conserved myopathic (muscle disease) processes and perform hierarchical and integrative analysis of muscle function from the level of single molecules and macromolecular complexes through the level of the tissue itself.

    Anthony Ross Cammarato, MD, is an assistant professor of medicine in the Cardiology Department. He studies the identification and manipulation of age- and mutation-dependent modifiers of cardiac function, hierarchical modeling and imaging of contractile machinery, integrative analysis of striated muscle performan...ce and myopathic processes. view more

    Research Areas: muscle development, genetics, myopathic processes, striated muscle biology, muscle function, myopathy, muscle physiology

    Lab Website

    Principal Investigator

    Anthony Cammarato, Ph.D.

    Department

    Medicine

  • Caren L. Freel Meyers Laboratory

    The long-term goal of the Caren L. Freel Meyers Laboratory is to develop novel approaches to kill human pathogens, including bacterial pathogens and malaria parasites, with the ultimate objective of developing potential therapeutic agents.

    Toward this goal, we are pursuing studies of bacterial isoprenoid biosynthetic enzymes comprising the methylerythritol phosphate (MEP) pathway essential in many human pathogens. Studies focus on understanding mechanism and regulation in the pathway toward the development of selective inhibitors of isoprenoid biosynthesis. Our strategies for creating new anti-infective agents involve interdisciplinary research in the continuum of organic, biological and medicinal chemistry. Molecular biology, protein expression and biochemistry, and synthetic chemistry are key tools for our research.

    Research Areas: bacterial pathogens, biochemistry, enzymes, infectious disease, protein expression, synthetic chemistry, isoprenoid biosynthesis, malaria, pharmacology, chemistry, molecular biology

  • Christopher A. Ross Lab

    Dr. Ross and his research team have focused on Huntington's disease and Parkinson's disease, and now are using insights from these disorders to approach more complex diseases such as schizophrenia and bipolar disorder. They use biophysical and biochemical techniques, cell models, and transgenic mouse models to understand disease processes, and to provide targets for development of rational therapeutics. These then can provide a basis for developing small molecule interventions, which can be used both as probes to study biology, and if they have favorable drug-like properties, for potential therapeutic development. We have used two strategies for identifying lead compounds. The first is the traditional path of identification of specific molecular targets, such as enzymes like the LRRK2 kinase of Parkinson’s disease. Once structure is known, computational approaches or fragment based lead discovery, in collaboration, can be used. The second is to conduct phenotypic screens using ce...ll models, or in a collaboration, natural products in a yeast model. Once a lead compound is identified, we use cell models for initial tests of compounds, then generate analogs, and take compounds that look promising to preclinical therapeutic studies in animal models. The ultimate goal is to develop therapeutic strategies that can be brought to human clinical trials, and we have pioneered in developing biomarkers and genetic testing for developing strategies. view more

    Research Areas: psychiatric disorders

  • Chulan Kwon Laboratory

    The C. Kwon Lab studies the cellular and molecular mechanisms governing heart generation and regeneration.

    The limited regenerative capacity of the heart is a major factor in morbidity and mortality rates: Heart malformation is the most frequent form of human birth defects, and cardiovascular disease is the leading cause of death worldwide. Cardiovascular progenitor cells hold tremendous therapeutic potential due to their unique ability to expand and differentiate into various heart cell types.

    Our laboratory seeks to understand the fundamental biology and regenerative potential of multi-potent cardiac progenitor cells – building blocks used to form the heart during fetal development — by deciphering the molecular and cellular mechanisms that control their induction, maintenance, and differentiation. We are also interested in elucidating the maturation event of heart muscle cells, an essential process to generate adult cardiomyocytes, which occurs after terminal differentiation ...of the progenitor cells. We believe this knowledge will contribute to our understanding of congenital and adult heart disease and be instrumental for stem cell-based heart regeneration.

    We have developed several novel approaches to deconstruct the mechanisms, including the use of animal models and pluripotent stem cell systems. We expect this knowledge will help us better understand heart disease and will be instrumental for stem-cell-based disease modeling and interventions for of heart repair.

    Dr. Chulan Kwon is an assistant professor of medicine at the Johns Hopkins University Heart and Vascular Institute.
    view more

    Research Areas: stem cells, cell biology, heart regeneration, congenital heart disease, cardiovascular, molecular biology, cardiac cells

    Lab Website

    Principal Investigator

    Chulan Kwon, M.S., Ph.D.

    Department

    Medicine

  • Cohen Lab

    The Cohen Lab studies neural circuits underlying reward, mood and decision making. We seek to understand how neural circuits control fundamental mammalian behaviors. Many disorders, including depression, schizophrenia, drug addiction and Parkinson's disease, appear to involve dysfunction of monoaminergic signaling. Using cell-type-specific tools and well-controlled behavioral tasks in mice, we aim to understand the function of monoaminergic circuits in behavior. We hope these basic discoveries will lead to an understanding of the biology of the brain and better treatments for disorders of the brain.

    Research Areas: neural circuits, brain, schizophrenia, mental illness, neuroscience, Parkinson's disease

    Lab Website

    Principal Investigator

    Jeremiah Cohen, Ph.D.

    Department

    Neuroscience

  • Daniel Nyhan Lab

    The Daniel Nyhan Lab studies vascular changes that accompany aging to determine the underlying causes and find ways to reverse the process. One goal of our research is to identify the factors that cause vascular stiffness. Our hope is that our work in vascular biology will lead to new ways to improve vascular compliance and thereby improve cardiovascular function and perioperative risk.

    Research Areas: hypertension, cardiovascular, vascular biology, vascular diseases

  • David Shortle Lab

    The principal research interest of the Shortle Lab is protein folding--how amino acid sequence information encodes three-dimensional structure. We are taking a combined experimental and computational approach to this longstanding puzzle of fundamental biochemistry. In addition, the laboratory is working to predict protein structure from sequence in ways that make the underlying physical chemistry transparent and the relative contributions of different interactions quantifiable.

    Research Areas: biochemistry, computational biology, protein folding, protein structure

  • David Sullivan Lab

    Research in the David Sullivan Lab focuses on malaria, including its diagnosis, treatment, molecular biology as it relates to iron, and pathology as it relates to severe anemia. We test and develop new malaria diagnostics — from real-time polymerase chain reaction (PCR) to novel urine and saliva detection platforms. This includes the adaptation of immuno-PCR (antibody coupled to DNA for PCR detection) to malaria and a lead blood stage drug that contains a quinine derivative used to treat malaria in the 1930s.

    Research Areas: molecular immunology, iron, anemia, malaria, molecular microbiology

    Principal Investigator

    David Sullivan, M.D.

    Department

    Medicine

  • Devreotes Laboratory

    The Devreotes Laboratory is engaged in genetic analysis of chemotaxis in eukaryotic cells. Our long-term goal is a complete description of the network controlling chemotactic behavior. We are analyzing combinations of deficiencies to understand interactions among network components and carrying out additional genetic screens to identify new pathways involved in chemotaxis. A comprehensive understanding of this fascinating process should lead to control of pathological conditions such as inflammation and cancer metastasis.

    Research Areas: biochemistry, cell biology, chemotaxis, cancer, genomics, inflammation

    Lab Website

    Principal Investigator

    Peter Devreotes, Ph.D.

    Department

    Cell Biology

  • Dhananjay Vaidya Lab

    Research conducted in the Dhananjay Vaidya Lab focuses on the prevention of heart disease, with special emphasis on cardiometabolic risk factors, genetics in high-risk families, cardiovascular epidemiology, statistics and vascular biology. We also provide consultation on study design as well as plan and oversee data analyses for projects supported by the Center for Child and Community Health Research.

    Research Areas: heart disease, epidemiology, data analysis, cardiometabolic risk factors, statistics, study design, cardiovascular, genomics, vascular biology

    Principal Investigator

    Jay Vaidya, M.B.B.S., M.P.H., Ph.D.

    Department

    Medicine

  • Doetzlhofer Laboratory - Center for Sensory Biology

    Auditory hair cells, located in the inner ear cochlea, are critical for our ability to detect sound. Research in Dr. Doetzlhofer's laboratory focuses on ways to identify and characterize the molecular mechanisms of hair cell development in the mammalian auditory system. She is also seeking to identify the molecular roadblocks preventing mammalian hair cell regeneration.

    Research Areas: deafness, auditory system, balance disorders

    Lab Website

    Principal Investigator

    Angelika Doetzlhofer, Ph.D.

    Department

    Neuroscience

  • Dong Laboratory

    The Dong Laboratory has identified many genes specifically expressed in primary sensory neurons in dorsal root ganglia (DRG). Our lab uses multiple approaches, including molecular biology, mouse genetics, mouse behavior and electrophysiology, to study the function of these genes in pain and itch sensation. Other research in the lab examines the molecular mechanism of how skin mast cells sensitize sensory nerves under inflammatory states.

    Research Areas: skin cells, electrophysiology, genetics, itch, neuroscience, pain, molecular biology

    Lab Website

    Principal Investigator

    Xinzhong Dong, Ph.D.

    Department

    Neuroscience

  • Drew Pardoll Lab

    The Pardoll Lab focuses on the regulation of antigen-specific T cell responses and studies approaches to modify these responses for immunotherapy. Pardoll has a particular interest in cancer immunology and his lab’s studies on basic immunologic mechanisms have led to the development and design of a number of cancer vaccines and discovery of key checkpoint ligands and receptors, such as PD-L2, LAG-3 and neuritin, many of which are being targeted clinically.

    Our primary pursuits are discovering and elucidating new molecules that regulate immune responses, investigating the biology of regulatory T cells, and better understanding the specific biochemical signatures that allow a patient’s T cells to selectively target cancer cells.

    Research Areas: tumor antigens, cancer, immunotherapy, regulatory T cells, T cells

    Principal Investigator

    Drew Pardoll, M.D., Ph.D.

    Department

    Medicine
    Oncology
    Pathology

  • Dwight Bergles Laboratory

    The Bergles Laboratory studies synaptic physiology, with an emphasis on glutamate transporters and glial involvement in neuronal signaling. We are interested in understanding the mechanisms by which neurons and glial cells interact to support normal communication in the nervous system. The lab studies glutamate transport physiology and function. Because glutamate transporters play a critical role in glutamate homeostasis, understanding the transporters' function is relevant to numerous neurological ailments, including stroke, epilepsy, and neurodegenerative diseases like amyotrophic lateral sclerosis (ALS). Other research in the laboratory focuses on signaling between neurons and glial cells at synapses. Understanding how neurons and cells communicate, may lead to new approaches for stimulating re-myelination following injury or disease. Additional research in the lab examines how a unique form of glia-to-neuron signaling in the cochlea influences auditory system development, whethe...r defects in cell communication lead to certain hereditary forms of hearing impairment, and if similar mechanisms are related to sound-induced tinnitus. view more

    Research Areas: epilepsy, synaptic physiology, ALS, stroke, neuronal signaling, glutamate transport physiology and function, audiology, neuroscience, neurology, nervous system, molecular biology

    Lab Website

    Principal Investigator

    Dwight Bergles, Ph.D.

    Department

    Neuroscience

  • Eberhart, Rodriguez and Raabe Lab

    Utilizing a combination of tissue-based, cell-based, and molecular approaches, our research goals focus on abnormal telomere biology as it relates to cancer initiation and tumor progression, with a particular interest in the Alternative Lengthening of Telomeres (ALT) phenotype. In addition, our laboratories focus on cancer biomarker discovery and validation with the ultimate aim to utilize these novel tissue-based biomarkers to improve individualized prevention, detection, and treatment strategies.

    Research Areas: cancer therapies, preventing cancer metastasis, cancer, cancer biomarkers

    Lab Website

    Principal Investigator

    Charles Eberhart, M.D., Ph.D.

    Department

    Pathology

  • Eberhart, Rodriguez and Raabe Lab

    Utilizing a combination of tissue-based, cell-based, and molecular approaches, our research goals focus on abnormal telomere biology as it relates to cancer initiation and tumor progression, with a particular interest in the Alternative Lengthening of Telomeres (ALT) phenotype. In addition, our laboratories focus on cancer biomarker discovery and validation with the ultimate aim to utilize these novel tissue-based biomarkers to improve individualized prevention, detection, and treatment strategies.

    Research Areas: stem cells, eye tumor, tumor cell metastasis, brain tumor

    Lab Website

    Principal Investigator

    Charles Eberhart, M.D., Ph.D.

    Department

    Pathology

  • Elizabeth Wagner Lab

    The Elizabeth Wagner Lab conducts research on several topics within the field of pulmonary medicine. Our key areas of investigation include angiogenesis of the lung and its dependence upon systemic vascularization to regions without pulmonary perfusion as well as the role of bronchial circulation in the uptake of hydrophilic particles that are delivered to the airway surface. In addition, we are conducting several specific studies that examine the relationship between the bronchial vasculature and the influx of inflammatory cells to a patientÕs airways.

    Research Areas: lung ischemia, pulmonary medicine, vascular remodeling, vascular biology, angiogenesis

    Principal Investigator

    Elizabeth Wagner, Ph.D.

    Department

    Medicine

  • Erika Matunis Laboratory

    The Erika Matunis Laboratory studies the stem cells that sustain spermatogenesis in the fruit fly Drosophila melanogaster to understand how signals from neighboring cells control stem cell renewal or differentiation. In the fruit fly testes, germ line stem cells attach to a cluster of non-dividing somatic cells called the hub. When a germ line stem cell divides, its daughter is pushed away from the hub and differentiates into a gonialblast. The germ line stem cells receive a signal from the hub that allows it to remain a stem cell, while the daughter displaced away from the hub loses the signal and differentiates. We have found key regulatory signals involved in this process. We use genetic and genomic approaches to identify more genes that define the germ line stem cells' fate. We are also investigating how spermatogonia reverse differentiation to become germ line stem cells again.

    Research Areas: stem cells, spermatogenesis, genomics, molecular biology

    Lab Website

    Principal Investigator

    Erika Matunis, Ph.D.

    Department

    Cell Biology

  • Espenshade Lab

    The Espenshade Lab uses a multi-organismal and multidisciplinary approach to understand how eukaryotic cells measure insoluble lipids and dissolved gases. We have chosen cholesterol and oxygen as our model molecules, based on their essential roles in cell function and the importance of their proper homeostasis for human health.

    Research Areas: cell biology, oxygen, eukaryotic cells, cholesterol

    Lab Website

    Principal Investigator

    Peter Espenshade, Ph.D.

    Department

    Cell Biology

  • Florin Selaru Lab

    Research interests in the Florin Selaru Lab comprise the molecular changes associated with the transition from inflammatory states in the GI tract (colon, stomach, biliary tree) to frank cancers. In addition, our current research—funded by the AGA, FAMRI and the Broad Foundation—works to further the understanding of cancer development and progression in the gastrointestinal tract.

    Research Areas: gastroenterology, cancer, inflammation, molecular biology

    Principal Investigator

    Florin Selaru, M.D.

    Department

    Medicine

  • Follow the Leader: Specialized Cancer Cells Lead Collective Invasion (Ewald Lab)

    Research in the Ewald laboratory starts from a simple question: Which cells in a breast tumor are the most dangerous to the patient and most responsible for metastatic disease? To answer this question, we developed novel 3-D culture assays to allow real-time analysis of invasion. Our data reveal that K14+ cancer cells play a central role in metastatic disease and suggest that the development of clinical strategies targeting these cells will provide novel breast cancer treatments.

    Research Areas: breast cancer, cellular biology, molecular biology

    Lab Website

    Principal Investigator

    Andrew Ewald, Ph.D.

    Department

    Cell Biology

  • Frederick Anokye-Danso Lab

    The Frederick Anokye-Danso Lab investigates the biological pathways at work in the separation of human pluripotent stem cells into adipocytes and pancreatic beta cells. We focus in particular on determinant factors of obesity and metabolic dysfunction, such as the P72R polymorphism of p53. We also conduct research on the reprogramming of somatic cells into pluripotent stem cells using miRNAs.

    Research Areas: stem cells, obesity, metabolism, biology

    Principal Investigator

    Frederick Anokye-Danso, M.Sc., Ph.D.

    Department

    Medicine

  • Frueh Laboratory

    The Frueh Laboratory uses nuclear magnetic resonance (NMR) to study how protein dynamics can be modulated and how active enzymatic systems can be conformed. Non-ribosomal peptide synthetases (NRPS) are large enzymatic systems that biosynthesize secondary metabolites, many of which are used by pharmaceutical scientists to produce drugs such as antibiotics or anticancer agents. Dr. Frueh's laboratory uses NMR to study inter- and intra-domain modifications that occur during the catalytic steps of NRPS. Dr. Frueh and his team are constantly developing new NMR techniques to study these complicated enzymatic systems.

    Research Areas: enzymes, proteomics, imaging, drugs, antibiotics, nuclear magnetic resonance, molecular biology

  • Fu Lab

    The Fu Lab is a basic research lab that studies zinc transport, with a particular focus on which step in the zinc transport process may be modulated and how. Dr. Fu's lab uses parallel cell biology and proteomic approaches to understand how these physiochemical principles are applied to mammalian zinc transporters and integrated to the physiology of pancreatic beta cells. This research has implications for understanding how zinc transport is related to diabetes and insulin intake.

    Research Areas: cell biology, proteomics, zinc, pancreatic cells, diabetes

    Lab Website

    Principal Investigator

    Dax Fu, Ph.D.

    Department

    Physiology

  • Goley Lab

    The Goley Lab is broadly interested in understanding cellular organization and dynamic reorganization, with particular focus on the roles of the cytoskeleton in these phenomena. We use cell biological, biochemical, genetic and structural approaches to dissect cytoskeletal processes with the aim of understanding how they work in molecular detail. Currently, we are focused on investigating the mechanisms underlying cytokinesis in bacteria. A deep understanding of cytoskeletal function in bacteria will aid in the identification of targets for novel antibiotic therapies and in efforts in synthetic biology.

    Research Areas: biological chemistry, cell biology, genomics, cytoskeleton

    Lab Website

    Principal Investigator

    Erin Goley, Ph.D.

    Department

    Biological Chemistry

  • Green Group

    The Green Group is the biomaterials and drug delivery laboratory in the Biomedical Engineering Department at the Johns Hopkins University School of Medicine. Our broad research interests are in cellular engineering and in nanobiotechnology. We are particularly interested in biomaterials, controlled drug delivery, stem cells, gene therapy, and immunobioengineering. We are working on the chemistry/biology/engineering interface to answer fundamental scientific questions and create innovative technologies and therapeutics that can directly benefit human health.

    Research Areas: nanobiotechnology, stem cells, biomedical engineering, drugs, immunobioengineering

    Lab Website

    Principal Investigator

    Jordan Green, Ph.D.

    Department

    Biomedical Engineering

  • Greider Lab

    The Greider lab uses biochemistry to study telomerase and cellular and organismal consequences of telomere dysfunction. Telomeres protect chromosome ends from being recognized as DNA damage and chromosomal rearrangements. Conventional replication leads to telomere shortening, but telomere length is maintained by the enzyme telomerase. Telomerase is required for cells that undergo many rounds of divisions, especially tumor cells and some stem cells. The lab has generated telomerase null mice that are viable and show progressive telomere shortening for up to six generations. In the later generations, when telomeres are short, cells die via apoptosis or senescence. Crosses of these telomerase null mice to other tumor prone mice show that tumor formation can be greatly reduced by short telomeres. The lab also is using the telomerase null mice to explore the essential role of telomerase stem cell viability. Telomerase mutations cause autosomal dominant dyskeratosis congenita. People with ...this disease die of bone marrow failure, likely due to stem cell loss. The lab has developed a mouse model to study this disease. Future work in the lab will focus on identifying genes that induce DNA damage in response to short telomeres, identifying how telomeres are processed and how telomere elongation is regulated. view more

    Research Areas: telomerase, biochemistry, stem cells, cell biology, DNA

  • Haig Kazazian Lab

    The Kazazian Lab focuses on the biology of LINE-1 (L1) retrotransposons. Retrotransposons are pieces of genomic DNA that have the ability to duplicate themselves and insert into a new genomic location. Current studies use innovative DNA sequencing to locate all human-specific L1s in any genome. By understanding L1 biology, we hope to better understand the role of these genomes and their behavior in complex human disease, such as cancer and mental disorders. The lab is also examining how to carry out gene therapy of hemophilia A using AAV vectors.

    Research Areas: cell biology, cancer, retrotransposons, DNA, genomics, mental disorders

    Lab Website

    Principal Investigator

    Haig Kazazian, M.D.

    Department

    Pediatrics

  • Herschel Wade Lab

    The emergence of structural genomics, proteomics and the large-scale sequencing of many genomes provides experimental access to regions of protein sequence-structure-function landscapes which have not been explored through traditional biochemical methods. Protein structure-function relationships can now be examined rigorously through the characterization of protein ensembles, which display structurally convergent--divergent solutions to analogous or very similar functional properties.

    In this modern biochemical context, the Herschel Wade Lab will use protein libraries, chemistry, biophysics, molecular biology and structural methods to examine the basis of molecular recognition in the context of several important biological problems, including structural and mechanistic aspects of multi-drug resistance, ligand-dependent molecular switches and metal ion homeostasis.

    Research Areas: biophysics, biochemistry, proteomics, genomics, drugs, molecular biology

  • Hey-Kyoung Lee Lab

    The Hey-Kyoung Lee Lab is interested in exploring the cellular and molecular changes that happen at synapses to allow memory storage. We use various techniques, including electrophysiological recording, biochemical and molecular analysis, and imaging, to understand the cellular and molecular changes that happen during synaptic plasticity.

    Currently, we are examining the molecular and cellular mechanisms of global homeostatic synaptic plasticity using sensory cortices as model systems. In particular, we found that loss of vision elicits global changes in excitatory synaptic transmission in the primary visual cortex. Vision loss also triggers specific synaptic changes in other primary sensory cortices, which we postulate underlies sensory compensation in the blind. One of our main research goals is to understand the mechanisms underlying such cross-modal synaptic plasticity.

    We are also interested in elucidating the events that occur in diseased brains. In collaboration with othe...r researchers, we are analyzing various mouse models of Alzheimer's disease, especially focusing on the possible alterations in synaptic plasticity mechanisms.
    view more

    Research Areas: biochemistry, synaptic plasticity, memory, imaging, vision, molecular biology, Alzheimer's disease

    Principal Investigator

    Hey-Kyoung Lee, Ph.D.

    Department

    Neuroscience

  • Holland Lab

    Research in the Holland Lab focuses on the molecular mechanisms that control accurate chromosome distribution and the role that mitotic errors play in human health and disease. We use a combination of chemical biology, biochemistry, cell biology and genetically engineered mice to study pathways involved in mitosis and their effect on cell and organism physiology. One of our major goals is to develop cell and animal-based models to study the role of cell-division defects in genome instability and tumorigenesis.

    Research Areas: cancer, genomics, molecular biology

  • Inoue Lab

    Complexity in signaling networks is often derived from co-opting one set of molecules for multiple operations. Understanding how cells achieve such sophisticated processing using a finite set of molecules within a confined space--what we call the "signaling paradox"--is critical to biology and engineering as well as the emerging field of synthetic biology.

    In the Inoue Lab, we have recently developed a series of chemical-molecular tools that allow for inducible, quick-onset and specific perturbation of various signaling molecules. Using this novel technique in conjunction with fluorescence imaging, microfabricated devices, quantitative analysis and computational modeling, we are dissecting intricate signaling networks.

    In particular, we investigate positive-feedback mechanisms underlying the initiation of neutrophil chemotaxis (known as symmetry breaking), as well as spatio-temporally compartmentalized signaling of Ras and membrane lipids such as phosphoinositides. In parallel,... we also try to understand how cell morphology affects biochemical pathways inside cells. Ultimately, we will generate completely orthogonal machinery in cells to achieve existing, as well as novel, cellular functions. Our synthetic, multidisciplinary approach will elucidate the signaling paradox created by nature. view more

    Research Areas: biochemistry, cell biology, chemotaxis, cancer, signaling paradox, signaling networks, molecular biology, synthetic biology

    Lab Website

    Principal Investigator

    Takanari Inoue, Ph.D.

    Department

    Cell Biology

  • Institute for Computational Medicine

    The Institute for Computational Medicine's mission is to develop quantitative approaches for understanding the mechanisms, diagnosis and treatment of human disease through biological systems modeling, computational anatomy, and bioinformatics. Our disease focus areas include breast cancer, brain disease and heart disease.

    The institute builds on groundbreaking research at both the Johns Hopkins University Whiting School of Engineering and the School of Medicine.

    Research Areas: breast cancer, systems biology, brain, biomedical engineering, cardiology, bioinformatics, computational anatomy

  • James Barrow Laboratory

    The James Barrow Laboratory studies drug discovery at the Lieber Institute. He leads research related to medicinal chemistry, biology, and drug metabolism, with the goal of validating novel mechanisms and advancing treatments for disorders of brain development.

    Research Areas: brain development, drugs, chemistry, biology

  • Jantzie Lab

    Dr. Jantzie, associate professor, received her Ph.D. in Neurochemistry from the University of Alberta in 2008. In 2013 she completed her postdoctoral fellowship in the Department of Neurology at Boston Children's Hospital & Harvard Medical School and became faculty at the University of New Mexico. Dr. Jantzie then joined the faculty Departments of Pediatrics (Neonatal-Perinatal Medicine) and Neurology at Johns Hopkins University and the Kennedy Krieger Institute in January 2019. Her lab investigates the pathophysiology of encephalopathy of prematurity, and pediatric brain injury common to infants and toddlers. Dr. Jantzie is dedicated to understanding disease processes in the developing brain as a means to identifying new therapeutic strategies and treatment targets for perinatal brain injury. Her lab studies neural substrates of cognition and executive function, inhibitory circuit formation, the role of an abnormal intrauterine environment on brain development, mechanisms of neurorepa...ir and microglial activation and polarization. Using a diverse array of clinically relevant techniques such as MRI, cognitive assessment, and biomarker discovery, combined with traditional molecular and cellular biology, the Jantzie lab is on the front lines of translational pediatric neuroscience.? view less

    Research Areas: Neonatology, neuroscience

    Principal Investigator

    Lauren Jantzie, Ph.D.

    Department

    Pediatrics

  • Jeremy Nathans Laboratory

    The Jeremy Nathans Laboratory is focused on neural and vascular development, and the role of Frizzled receptors in mammalian development. We use gene manipulation in the mouse, cell culture models, and biochemical reconstitution to investigate the relevant molecular events underlying these processes, and to genetically mark and manipulate cells and tissues. Current experiments are aimed at defining additional Frizzled-regulated processes and elucidating the molecular mechanisms and cell biologic results of Frizzled signaling within these various contexts. Complementing these areas of biologic interest, we have ongoing technology development projects related to genetically manipulating and visualizing defined cell populations in the mouse, and quantitative analysis of mouse visual system function.

    Research Areas: vascular development, biochemistry, cell biology, neurodevelopment, genomics, Frizzled receptors, neuroscience

  • Joel Pomerantz Laboratory

    The Pomerantz Laboratory studies the molecular machinery used by cells to interpret extracellular signals and transduce them to the nucleus to affect changes in gene expression. The accurate response to extracellular signals results in a cell's decision to proliferate, differentiate or die, and it's critical for normal development and physiology. The dysregulation of this machinery underlies the unwarranted expansion or destruction of cell numbers that occurs in human diseases like cancer, autoimmunity, hyperinflammatory states and neurodegenerative disease.

    Current studies in the lab focus on signaling pathways that are important in innate immunity, adaptive immunity and cancer, with particular focus on pathways that regulate the activity of the pleiotropic transcription factor NF-kB.

    Research Areas: immunology, neurodegenerative disorders, cancer, autoimmune, hyperinflammatory states, molecular biology

    Principal Investigator

    Joel Pomerantz, Ph.D.

    Department

    Biological Chemistry

  1. 1
  2. 2
  3. 3