Skip Navigation

Find a Research Lab

Research Lab Results for biology

Displaying 1 to 20 of 56 results
Results per page:
  • Anderson Lab

    Lab Website
    Principal Investigator:
    Mark Anderson, M.D., Ph.D.
    Medicine

    Research in the Anderson laboratory focuses on cellular signaling and ionic mechanisms that cau...se heart failure, arrhythmias and sudden cardiac death, major public health problems worldwide. Primary focus is on the multifunctional Ca2+ and calmodulin-dependent protein kinase II (CaMKII). The laboratory identified CaMKII as an important pro-arrhythmic and pro-cardiomyopathic signal, and its studies have provided proof of concept evidence motivating active efforts in biotech and the pharmaceutical industry to develop therapeutic CaMKII inhibitory drugs to treat heart failure and arrhythmias.

    Under physiological conditions, CaMKII is important for excitation-contraction coupling and fight or flight increases in heart rate. However, myocardial CaMKII is excessively activated during disease conditions where it contributes to loss of intracellular Ca2+ homeostasis, membrane hyperexcitability, premature cell death, and hypertrophic and inflammatory transcription. These downstream targets appear to contribute coordinately and decisively to heart failure and arrhythmias. Recently, researchers developed evidence that CaMKII also participates in asthma.

    Efforts at the laboratory, funded by grants from the National Institutes of Health, are highly collaborative and involve undergraduate assistants, graduate students, postdoctoral fellows and faculty. Key areas of focus are:
    • Ion channel biology and arrhythmias
    • Cardiac pacemaker physiology and disease
    • Molecular physiology of CaMKII
    • Myocardial and mitochondrial metabolism
    • CaMKII and reactive oxygen species in asthma

    Mark Anderson, MD, is the William Osler Professor of Medicine, the director of the Department of Medicine in the Johns Hopkins University School of Medicine and physician-in-chief of The Johns Hopkins Hospital.
    view more

    Research Areas: heart failure, arrhythmia, cardiovascular diseases, sudden cardiac death
  • Andrew Lane Lab

    The Lane laboratory is focused on understanding molecular mechanisms underlying chronic rhinosi...nusitis, particularly the pathogenesis of nasal polyps, as well as inflammation on the olfactory epithelium. Diverse techniques in molecular biology, immunology, and physiology are utilized to study epithelial cell innate immunity, olfactory loss, and response to viral infection. Ongoing work explores how epithelial cells of the sinuses and olfactory mucosa participate in the immune response and contribute to chronic inflammation. The lab creates and employs transgenic mouse models of chronic nasal/sinus inflammation to support research in this area. Collaborations are in place with the School of Public Health to explore mechanisms of anti-viral immunity in influenza and COVID-19. view more

    Research Areas: nasal polyps, immunology, COVID-19, olfaction, cell culture, transgenic mice, chronic rhinosinusitis, innate immunity, neuroscience, molecular biology
  • Brain Cancer Biology and Therapy Lab

    Lab Website
    Principal Investigator:
    Gregory Riggins, M.D., Ph.D.
    Neurosurgery

    The goal of the Johns Hopkins Brain Cancer Biology and Therapy Laboratory is to locate the gene...tic and genomic changes that lead to brain cancer. These molecular changes are evaluated for their potential as therapeutic targets and are often mutated genes, or genes that are over-expressed during the development of a brain cancer. The brain cancers that the Riggins Laboratory studies are medulloblastomas and glioblastomas. Medulloblastomas are the most common malignant brain tumor for children and glioblastomas are the most common malignant brain tumor for adults. Both tumors are difficult to treat, and new therapies are urgently needed for these cancers. Our laboratory uses large-scale genomic approaches to locate and analyze the genes that are mutated during brain cancer development. The technologies we now employ are capable of searching nearly all of a cancer genome for molecular alterations that can lead to cancer. The new molecular targets for cancer therapy are first located by large scale gene expression analysis, whole-genome scans for altered gene copy number and high throughput sequence analysis of cancer genomes. The alterations we find are then studied in-depth to determine how they contribute to the development of cancer, whether it is promoting tumor growth, enhancing the ability for the cancer to invade into normal tissue, or preventing the various fail-safe mechanisms programmed into our cells. view more

    Research Areas: brain cancer
  • Cammarato Lab

    Lab Website
    Principal Investigator:
    Anthony Cammarato, Ph.D.
    Medicine

    The Cammarato Lab is located in the Division of Cardiology in the Department of Medicine at the... Johns Hopkins University School of Medicine. We are interested in basic mechanisms of striated muscle biology.

    We employ an array of imaging techniques to study “structural physiology” of cardiac and skeletal muscle. Drosophila melanogaster, the fruit fly, expresses both forms of striated muscle and benefits greatly from powerful genetic tools. We investigate conserved myopathic (muscle disease) processes and perform hierarchical and integrative analysis of muscle function from the level of single molecules and macromolecular complexes through the level of the tissue itself.

    Anthony Ross Cammarato, MD, is an assistant professor of medicine in the Cardiology Department. He studies the identification and manipulation of age- and mutation-dependent modifiers of cardiac function, hierarchical modeling and imaging of contractile machinery, integrative analysis of striated muscle performance and myopathic processes.
    view more

    Research Areas: muscle development, genetics, myopathic processes, striated muscle biology, muscle function, myopathy, muscle physiology
  • Cardiovascular Stem Cell Program

    Lab Website
    Principal Investigator:
    Chulan Kwon, Ph.D., M.S.
    Medicine

    The research program aims to advance cardiovascular biology and medicine by focusing on pluripo...tent stem cell-based modeling and therapy and by nurturing future leaders in regenerative medicine. view more

    Research Areas: cardiac, stem cells, cardiology, regenerative medicine
  • Caren L. Freel Meyers Laboratory

    Lab Website

    The long-term goal of the Caren L. Freel Meyers Laboratory is to develop novel approaches to ki...ll human pathogens, including bacterial pathogens and malaria parasites, with the ultimate objective of developing potential therapeutic agents.

    Toward this goal, we are pursuing studies of bacterial isoprenoid biosynthetic enzymes comprising the methylerythritol phosphate (MEP) pathway essential in many human pathogens. Studies focus on understanding mechanism and regulation in the pathway toward the development of selective inhibitors of isoprenoid biosynthesis. Our strategies for creating new anti-infective agents involve interdisciplinary research in the continuum of organic, biological and medicinal chemistry. Molecular biology, protein expression and biochemistry, and synthetic chemistry are key tools for our research.
    view more

    Research Areas: bacterial pathogens, biochemistry, enzymes, infectious disease, protein expression, synthetic chemistry, isoprenoid biosynthesis, malaria, pharmacology, chemistry, molecular biology
  • Christopher A. Ross Lab

    Lab Website

    Dr. Ross and his research team have focused on Huntington's disease and Parkinson's disease, an...d now are using insights from these disorders to approach more complex diseases such as schizophrenia and bipolar disorder. They use biophysical and biochemical techniques, cell models, and transgenic mouse models to understand disease processes, and to provide targets for development of rational therapeutics. These then can provide a basis for developing small molecule interventions, which can be used both as probes to study biology, and if they have favorable drug-like properties, for potential therapeutic development. We have used two strategies for identifying lead compounds. The first is the traditional path of identification of specific molecular targets, such as enzymes like the LRRK2 kinase of Parkinson’s disease. Once structure is known, computational approaches or fragment based lead discovery, in collaboration, can be used. The second is to conduct phenotypic screens using cell models, or in a collaboration, natural products in a yeast model. Once a lead compound is identified, we use cell models for initial tests of compounds, then generate analogs, and take compounds that look promising to preclinical therapeutic studies in animal models. The ultimate goal is to develop therapeutic strategies that can be brought to human clinical trials, and we have pioneered in developing biomarkers and genetic testing for developing strategies. view more

    Research Areas: psychiatric disorders
  • Chulan Kwon Laboratory

    Lab Website
    Principal Investigator:
    Chulan Kwon, Ph.D., M.S.
    Medicine

    The C. Kwon Lab studies the cellular and molecular mechanisms governing heart generation and re...generation.

    The limited regenerative capacity of the heart is a major factor in morbidity and mortality rates: Heart malformation is the most frequent form of human birth defects, and cardiovascular disease is the leading cause of death worldwide. Cardiovascular progenitor cells hold tremendous therapeutic potential due to their unique ability to expand and differentiate into various heart cell types.

    Our laboratory seeks to understand the fundamental biology and regenerative potential of multi-potent cardiac progenitor cells – building blocks used to form the heart during fetal development — by deciphering the molecular and cellular mechanisms that control their induction, maintenance, and differentiation. We are also interested in elucidating the maturation event of heart muscle cells, an essential process to generate adult cardiomyocytes, which occurs after terminal differentiation of the progenitor cells. We believe this knowledge will contribute to our understanding of congenital and adult heart disease and be instrumental for stem cell-based heart regeneration.

    We have developed several novel approaches to deconstruct the mechanisms, including the use of animal models and pluripotent stem cell systems. We expect this knowledge will help us better understand heart disease and will be instrumental for stem-cell-based disease modeling and interventions for of heart repair.

    Dr. Chulan Kwon is an assistant professor of medicine at the Johns Hopkins University Heart and Vascular Institute.
    view more

    Research Areas: stem cells, cell biology, heart regeneration, congenital heart disease, cardiovascular, molecular biology, cardiac cells
  • Cohen Lab

    Lab Website
    Principal Investigator:
    Jeremiah Cohen, Ph.D.
    Neuroscience

    The Cohen Lab studies neural circuits underlying reward, mood and decision making. We seek to u...nderstand how neural circuits control fundamental mammalian behaviors. Many disorders, including depression, schizophrenia, drug addiction and Parkinson's disease, appear to involve dysfunction of monoaminergic signaling. Using cell-type-specific tools and well-controlled behavioral tasks in mice, we aim to understand the function of monoaminergic circuits in behavior. We hope these basic discoveries will lead to an understanding of the biology of the brain and better treatments for disorders of the brain. view more

    Research Areas: neural circuits, brain, schizophrenia, mental illness, neuroscience, Parkinson's disease
  • Daniel Nyhan Lab

    Lab Website

    The Daniel Nyhan Lab studies vascular changes that accompany aging to determine the underlying ...causes and find ways to reverse the process. One goal of our research is to identify the factors that cause vascular stiffness. Our hope is that our work in vascular biology will lead to new ways to improve vascular compliance and thereby improve cardiovascular function and perioperative risk. view more

    Research Areas: hypertension, cardiovascular, vascular biology, vascular diseases
  • Dhananjay Vaidya Lab

    Research conducted in the Dhananjay Vaidya Lab focuses on the prevention of heart disease, with... special emphasis on cardiometabolic risk factors, genetics in high-risk families, cardiovascular epidemiology, statistics and vascular biology. We also provide consultation on study design as well as plan and oversee data analyses for projects supported by the Center for Child and Community Health Research. view more

    Research Areas: heart disease, epidemiology, data analysis, cardiometabolic risk factors, statistics, study design, cardiovascular, genomics, vascular biology
  • Dong Laboratory

    Lab Website
    Principal Investigator:
    Xinzhong Dong, Ph.D.
    Neuroscience

    The Dong Laboratory has identified many genes specifically expressed in primary sensory neurons... in dorsal root ganglia (DRG). Our lab uses multiple approaches, including molecular biology, mouse genetics, mouse behavior and electrophysiology, to study the function of these genes in pain and itch sensation. Other research in the lab examines the molecular mechanism of how skin mast cells sensitize sensory nerves under inflammatory states. view more

    Research Areas: skin cells, electrophysiology, genetics, itch, neuroscience, pain, molecular biology
  • Drew Pardoll Lab

    The Pardoll Lab focuses on the regulation of antigen-specific T cell responses and studies appr...oaches to modify these responses for immunotherapy. Pardoll has a particular interest in cancer immunology and his lab’s studies on basic immunologic mechanisms have led to the development and design of a number of cancer vaccines and discovery of key checkpoint ligands and receptors, such as PD-L2, LAG-3 and neuritin, many of which are being targeted clinically.

    Our primary pursuits are discovering and elucidating new molecules that regulate immune responses, investigating the biology of regulatory T cells, and better understanding the specific biochemical signatures that allow a patient’s T cells to selectively target cancer cells.
    view more

    Research Areas: tumor antigens, cancer, immunotherapy, regulatory T cells, T cells
  • Eberhart, Rodriguez and Raabe Lab

    Lab Website
    Principal Investigator:
    Charles Eberhart, M.D., Ph.D.
    Pathology

    Utilizing a combination of tissue-based, cell-based, and molecular approaches, our research goa...ls focus on abnormal telomere biology as it relates to cancer initiation and tumor progression, with a particular interest in the Alternative Lengthening of Telomeres (ALT) phenotype. In addition, our laboratories focus on cancer biomarker discovery and validation with the ultimate aim to utilize these novel tissue-based biomarkers to improve individualized prevention, detection, and treatment strategies. view more

    Research Areas: cancer therapies, preventing cancer metastasis, cancer, cancer biomarkers
  • Eberhart, Rodriguez and Raabe Lab

    Lab Website
    Principal Investigator:
    Charles Eberhart, M.D., Ph.D.
    Pathology

    Utilizing a combination of tissue-based, cell-based, and molecular approaches, our research goa...ls focus on abnormal telomere biology as it relates to cancer initiation and tumor progression, with a particular interest in the Alternative Lengthening of Telomeres (ALT) phenotype. In addition, our laboratories focus on cancer biomarker discovery and validation with the ultimate aim to utilize these novel tissue-based biomarkers to improve individualized prevention, detection, and treatment strategies.
    view more

    Research Areas: stem cells, eye tumor, tumor cell metastasis, brain tumor
  • Frailty Science and the Biology of Healthy Aging

    Lab Website
    Principal Investigator:
    Jeremy Walston, M.D.
    Medicine

    Our Mission: To provide scientists, students, and community members with state-of-the-art infor...mation on frailty-related science and how it might impact health and wellness for older adults.

    Our Goal: To improve the understanding of how frailty develops, how to best assess it, and how to best treat and prevent frailty-related decline.
    view more

    Research Areas: geriatrics, frailty
  • Fu Lab

    Lab Website
    Principal Investigator:
    Dax Fu, Ph.D.
    Physiology

    The Fu Lab is a basic research lab that studies zinc transport, with a particular focus on whic...h step in the zinc transport process may be modulated and how. Dr. Fu's lab uses parallel cell biology and proteomic approaches to understand how these physiochemical principles are applied to mammalian zinc transporters and integrated to the physiology of pancreatic beta cells. This research has implications for understanding how zinc transport is related to diabetes and insulin intake. view more

    Research Areas: cell biology, proteomics, zinc, pancreatic cells, diabetes
  • Goley Lab

    Lab Website
    Principal Investigator:
    Erin Goley, Ph.D.
    Biological Chemistry

    The Goley Lab is broadly interested in understanding cellular organization and dynamic reorgani...zation, with particular focus on the roles of the cytoskeleton in these phenomena. We use cell biological, biochemical, genetic and structural approaches to dissect cytoskeletal processes with the aim of understanding how they work in molecular detail. Currently, we are focused on investigating the mechanisms underlying cytokinesis in bacteria. A deep understanding of cytoskeletal function in bacteria will aid in the identification of targets for novel antibiotic therapies and in efforts in synthetic biology. view more

    Research Areas: biological chemistry, cell biology, genomics, cytoskeleton
  1. 1
  2. 2
  3. 3
Create lab profile
Edit lab profile
back to top button