Skip Navigation

COVID-19: We are vaccinating patients ages 12+. Learn more:

Vaccines, Boosters & Additional Doses | Testing | Patient Care | Visitor Guidelines | Coronavirus | Self-Checker | Email Alerts

 

Philips Respironics issued a recall for some CPAP and BiLevel PAP devices and mechanical ventilators. Learn more.

Find a Research Lab

Research Lab Results for biology

Displaying 21 to 30 of 118 results
Results per page:
  • Devreotes Laboratory

    Lab Website
    Principal Investigator:
    Peter Devreotes, Ph.D.
    Cell Biology

    The Devreotes Laboratory is engaged in genetic analysis of chemotaxis in eukaryotic cells. Our long-term goal is a complete description of the network controlling chemotactic behavior. We are analyzing combinations of deficiencies to understand interactions among network components and carrying out additional genetic screens to identify new pathways involved in chemotaxis. A comprehensive understanding of this fascinating process should lead to control of pathological conditions such as inflammation and cancer metastasis.

    Research Areas: biochemistry, cell biology, chemotaxis, cancer, genomics, inflammation
  • Dhananjay Vaidya Lab

    Research conducted in the Dhananjay Vaidya Lab focuses on the prevention of heart disease, with special emphasis on cardiometabolic risk factors, genetics in high-risk families, cardiovascular epidemiology, statistics and vascular biology. We also provide consultation on study design as well as plan and oversee data analyses for projects supported by the Center for Child and Community Health Research.

    Research Areas: heart disease, epidemiology, data analysis, cardiometabolic risk factors, statistics, study design, cardiovascular, genomics, vascular biology
  • Doetzlhofer Laboratory - Center for Sensory Biology

    Lab Website
    Principal Investigator:
    Angelika Doetzlhofer, Ph.D.
    Neuroscience

    Auditory hair cells, located in the inner ear cochlea, are critical for our ability to detect sound. Research in Dr. Doetzlhofer's laboratory focuses on ways to identify and characterize the molecular mechanisms of hair cell development in the mammalian auditory system. She is also seeking to identify the molecular roadblocks preventing mammalian hair cell regeneration.

    Research Areas: deafness, auditory system, balance disorders
  • Dong Laboratory

    Lab Website
    Principal Investigator:
    Xinzhong Dong, Ph.D.
    Neuroscience

    The Dong Laboratory has identified many genes specifically expressed in primary sensory neurons in dorsal root ganglia (DRG). Our lab uses multiple approaches, including molecular biology, mouse genetics, mouse behavior and electrophysiology, to study the function of these genes in pain and itch sensation. Other research in the lab examines the molecular mechanism of how skin mast cells sensitize sensory nerves under inflammatory states.

    Research Areas: skin cells, electrophysiology, genetics, itch, neuroscience, pain, molecular biology
  • Drew Pardoll Lab

    The Pardoll Lab focuses on the regulation of antigen-specific T cell responses and studies approaches to modify these responses for immunotherapy. Pardoll has a particular interest in cancer immunology and his lab’s studies on basic immunologic mechanisms have led to the development and design of a number of cancer vaccines and discovery of key checkpoint ligands and receptors, such as PD-L2, LAG-3 and neuritin, many of which are being targeted clinically.

    Our primary pursuits are discovering and elucidating new molecules that regulate immune responses, investigating the biology of regulatory T cells, and better understanding the specific biochemical signatures that allow a patient’s T cells to selectively target cancer cells.

    Research Areas: tumor antigens, cancer, immunotherapy, regulatory T cells, T cells
  • Dwight Bergles Laboratory

    Lab Website
    Principal Investigator:
    Dwight Bergles, Ph.D.
    Neuroscience

    The Bergles Laboratory studies synaptic physiology, with an emphasis on glutamate transporters and glial involvement in neuronal signaling. We are interested in understanding the mechanisms by which neurons and glial cells interact to support normal communication in the nervous system. The lab studies glutamate transport physiology and function. Because glutamate transporters play a critical role in glutamate homeostasis, understanding the transporters' function is relevant to numerous neurological ailments, including stroke, epilepsy, and neurodegenerative diseases like amyotrophic lateral sclerosis (ALS). Other research in the laboratory focuses on signaling between neurons and glial cells at synapses. Understanding how neurons and cells communicate, may lead to new approaches for stimulating re-myelination following injury or disease. Additional research in the lab examines how a unique form of glia-to-neuron signaling in the cochlea influences auditory system development, whethe...r defects in cell communication lead to certain hereditary forms of hearing impairment, and if similar mechanisms are related to sound-induced tinnitus. view more

    Research Areas: epilepsy, synaptic physiology, ALS, stroke, neuronal signaling, glutamate transport physiology and function, audiology, neuroscience, neurology, nervous system, molecular biology
  • Eberhart, Rodriguez and Raabe Lab

    Lab Website
    Principal Investigator:
    Charles Eberhart, M.D., Ph.D.
    Pathology

    Utilizing a combination of tissue-based, cell-based, and molecular approaches, our research goals focus on abnormal telomere biology as it relates to cancer initiation and tumor progression, with a particular interest in the Alternative Lengthening of Telomeres (ALT) phenotype. In addition, our laboratories focus on cancer biomarker discovery and validation with the ultimate aim to utilize these novel tissue-based biomarkers to improve individualized prevention, detection, and treatment strategies.

    Research Areas: cancer therapies, preventing cancer metastasis, cancer, cancer biomarkers
  • Eberhart, Rodriguez and Raabe Lab

    Lab Website
    Principal Investigator:
    Charles Eberhart, M.D., Ph.D.
    Pathology

    Utilizing a combination of tissue-based, cell-based, and molecular approaches, our research goals focus on abnormal telomere biology as it relates to cancer initiation and tumor progression, with a particular interest in the Alternative Lengthening of Telomeres (ALT) phenotype. In addition, our laboratories focus on cancer biomarker discovery and validation with the ultimate aim to utilize these novel tissue-based biomarkers to improve individualized prevention, detection, and treatment strategies.

    Research Areas: stem cells, eye tumor, tumor cell metastasis, brain tumor
  • Erika Matunis Laboratory

    Lab Website
    Principal Investigator:
    Erika Matunis, Ph.D.
    Cell Biology

    The Erika Matunis Laboratory studies the stem cells that sustain spermatogenesis in the fruit fly Drosophila melanogaster to understand how signals from neighboring cells control stem cell renewal or differentiation. In the fruit fly testes, germ line stem cells attach to a cluster of non-dividing somatic cells called the hub. When a germ line stem cell divides, its daughter is pushed away from the hub and differentiates into a gonialblast. The germ line stem cells receive a signal from the hub that allows it to remain a stem cell, while the daughter displaced away from the hub loses the signal and differentiates. We have found key regulatory signals involved in this process. We use genetic and genomic approaches to identify more genes that define the germ line stem cells' fate. We are also investigating how spermatogonia reverse differentiation to become germ line stem cells again.

    Research Areas: stem cells, spermatogenesis, genomics, molecular biology
  • Espenshade Lab

    Lab Website
    Principal Investigator:
    Peter Espenshade, Ph.D.
    Cell Biology

    The Espenshade Lab uses a multi-organismal and multidisciplinary approach to understand how eukaryotic cells measure insoluble lipids and dissolved gases. We have chosen cholesterol and oxygen as our model molecules, based on their essential roles in cell function and the importance of their proper homeostasis for human health.

    Research Areas: cell biology, oxygen, eukaryotic cells, cholesterol
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. >>
Create lab profile
Edit lab profile
back to top button