Skip Navigation

Find a Research Lab

Research Lab Results for behavior

Displaying 11 to 20 of 20 results
Results per page:
  • Kathleen Cullen Lab

    Lab Website

    We are continually in motion. This self-motion is sensed by the vestibular system, which contri...butes to an impressive range of brain functions, from the most automatic reflexes to spatial perception and motor coordination. The objective of Dr. Cullen's lab's research program is to understand the mechanisms by which self-motion (vestibular) information is encoded and then integrated with signals from other modalities to ensure accurate perception and control of gaze and posture. Our studies investigate the sensorimotor transformations required for the control of movement, by tracing the coding of vestibular stimuli from peripheral afferents, to behaviorally-contingent responses in central pathways, to the readout of accurate perception and behavior. Our experimental approach is multidisciplinary and includes a combination of behavioral, neurophysiological and computational approaches in alert behaving non-human primates and mice. Funding for the laboratory has been and is provided by the Canadian Institutes for Health Research (CIHR), The National Institutes of Health (NIH), the National Sciences and Engineering Research Council of Canada (NSERC), FQRNT / FQRSC (Quebec). view more

    Research Areas: otolaryngology, biomedical engineering, surgery, neuroscience
  • Marshall Shuler Laboratory

    Lab Website
    Principal Investigator:
    Marshall Shuler, Ph.D.
    Neuroscience

    The Marshall Shuler Laboratory aims to understand the means by which brain reward systems conve...y reward value, expectancy, quality, probability and utility, and the rules by which such activity is used to affect synaptic weight within brain networks to encode stimulus-action associations. We use an interdisciplinary approach combining multisite recordings of neural activity, targeted pharmacological manipulation, viral-mediated gene transfer and behavior to study the neural mechanisms of reward-based interval learning in the primary visual cortex. view more

    Research Areas: neural circuits, reward-based systems, brain, vision, pharmacology
  • Michael Caterina Lab

    The Caterina lab is focused on dissecting mechanisms underlying acute and chronic pain sensatio...n. We use a wide range of approaches, including mouse genetics, imaging, electrophysiology, behavior, cell culture, biochemistry and neuroanatomy to tease apart the molecular and cellular contributors to pathological pain sensation. A few of the current projects in the lab focus on defining the roles of specific subpopulations of neuronal and non-neuronal cells to pain sensation, defining the role of RNA binding proteins in the development and maintenance of neuropathic pain, and understanding how rare skin diseases known as palmoplantar keratodermas lead to severe pain in the hands and feet. view more

    Research Areas: biophysics, biochemistry, proteomics, inflammation, pain
  • Michael Wolfgang Laboratory

    The Wolfgang Laboratory is interested in understanding the metabolic properties of neurons and ...glia at a mechanistic level in situ. Some of the most interesting, enigmatic and understudied cells in metabolic biochemistry are those of the nervous system. Defects in these pathways can lead to devastating neurological disease. Conversely, altering the metabolic properties of the nervous system can have surprisingly beneficial effects on the progression of some diseases. However, the mechanisms of these interactions are largely unknown.

    We use biochemical and molecular genetic techniques to study the molecular mechanisms that the nervous system uses to sense and respond to metabolic cues. We seek to understand the neurometabolic regulation of behavior and physiology in obesity, diabetes and neurological disease.

    Current areas of study include deconstructing neurometabolic pathways to understand the biochemistry of the nervous system and how these metabolic pathways impact animal behavior and physiology, metabolic heterogeneity and the evolution of metabolic adaptation.
    view more

    Research Areas: metabolic biochemistry, obesity, diabetes, genomics, neurology, nervous system, molecular biology
  • Molecular Mechanisms of Cellular Mechanosensing (Robinson Lab)

    Lab Website

    The Robinson Lab studies the way in which mechanical stress guide and direct the behavior of ce...lls, including when they are part of tissues, organs and organ systems. view more

    Research Areas: cellular mechanosensing, tissues, organs, molecular biology
  • Neuroimaging and Modulation Laboratory (NIMLAB)

    Lab Website
    Principal Investigator:
    John Desmond, Ph.D., M.S.
    Neurology

    The neuroimaging and Modulation Laboratory (NIMLAB) investigates neural correlates of cognition... and behavior using neuroimaging methods such as functional magnetic resonance imaging (fMRI) and neuromodulation techniques such as transcranial magnetic stimulation (TMS). We are looking in depth at the contributions of the cerebellum and cerebro-cerebellar circuits to cognition; the effects of chronic heavy alcohol consumption on cognition and brain activation underlying cognitive function; how aging in humans affects neural systems that are important for associative learning and stimulus awareness; and the integration of transcranial magnetic stimulation with functional MRI. view more

    Research Areas: cognition, alcohol, functional magnetic resonance imaging, imaging, aging, neuroscience, neuroimaging, transcranial magnetic stimulation
  • O'Connor Lab

    Lab Website
    Principal Investigator:
    Daniel O'Connor, Ph.D., M.A.
    Neuroscience

    How do brain dynamics give rise to our sensory experience of the world? The O'Connor lab works ...to answer this question by taking advantage of the fact that key architectural features of the mammalian brain are similar across species. This allows us to leverage the power of mouse genetics to monitor and manipulate genetically and functionally defined brain circuits during perception. We train mice to perform simple perceptual tasks. By using quantitative behavior, optogenetic and chemical-genetic gain- and loss-of-function perturbations, in vivo two-photon imaging, and electrophysiology, we assemble a description of the relationship between neural circuit function and perception. We work in the mouse tactile system to capitalize on an accessible mammalian circuit with a precise mapping between the sensory periphery and multiple brain areas. Our mission is to reveal the neural circuit foundations of sensory perception; to provide a framework to understand how circuit dysfunction causes mental and behavioral aspects of neuropsychiatric illness; and to help others fulfill creative potential and contribute to human knowledge. view more

    Research Areas: brain, mental illness, neuroscience, perception
  • Sarah Clever Lab

    Principal Investigator:
    Sarah Clever, M.D.
    Medicine

    Work in the Sarah Clever Lab focuses on medical education, patient-provider communication and t...he role of shared decision-making in patient recovery. We recently examined the ethical dilemmas of caring for “influential” patients whose attributes and characteristics (for example, social status, occupation, or position), coupled with their behavior, have the potential to significantly affect a clinician's judgment or actions. view more

    Research Areas: medical education, medical decision making, patient-provider relationships
  • Shanthini Sockanathan Laboratory

    Lab Website

    The Shanthini Sockanathan Laboratory uses the developing spinal cord as our major paradigm to d...efine the mechanisms that maintain an undifferentiated progenitor state and the molecular pathways that trigger their differentiation into neurons and glia. The major focus of the lab is the study of a new family of six-transmembrane proteins (6-TM GDEs) that play key roles in regulating neuronal and glial differentiation in the spinal cord. We recently discovered that the 6-TM GDEs release GPI-anchored proteins from the cell surface through cleavage of the GPI-anchor. This discovery identifies 6-TM GDEs as the first vertebrate membrane bound GPI-cleaving enzymes that work at the cell surface to regulate GPI-anchored protein function. Current work in the lab involves defining how the 6-TM GDEs regulate cellular signaling events that control neuronal and glial differentiation and function, with a major focus on how GDE dysfunction relates to the onset and progression of disease. To solve these questions, we use an integrated approach that includes in vivo models, imaging, molecular biology, biochemistry, developmental biology, genetics and behavior. view more

    Research Areas: glia, biochemistry, neurons, imaging, developmental biology, genomics, spinal cord, behavior, molecular biology
  1. 1
  2. 2
Create lab profile
Edit lab profile
back to top button