-
About
- Health
-
Patient Care
I Want To...
-
Research
I Want To...
Find Research Faculty
Enter the last name, specialty or keyword for your search below.
-
School of Medicine
I Want to...
Find a Research Lab
- 1
-
Andrew Feinberg Laboratory
The Feinberg Laboratory studies the epigenetic basis of normal development and disease, including cancer, aging and neuropsychiatric illness. Early work from our group involved the discovery of altered DNA methylation in cancer as well as common epigenetic (methylation and imprinting) variants in the population that may be responsible for a significant population-attributable risk of cancer.
Over the last few years, we have pioneered the field of epigenomics (i.e., epigenetics at a genome-scale level), founding the first NIH-supported NIH epigenome center in the country and developing many novel tools for molecular and statistical analysis. Current research examines the mechanisms of epigenetic modification, the epigenetic basis of cancer, the invention of new molecular, statistical, and epidemiological tools for genome-scale epigenetics and the epigenetic basis of neuropsychiatric disease, including schizophrenia and autism. -
Brown Lab
The Brown Lab is focused on the function of the cerebral cortex in the brain, which underlies our ability to interact with our environment through sensory perception and voluntary movement. Our research takes a bottom-up approach to understanding how the circuits of this massively interconnected network of neurons are functionally organized, and how dysfunction in these circuits contributes to neurodegenerative diseases like amyotrophic lateral sclerosis and neuropsychiatric disorders, including autism and schizophrenia. By combining electrophysiological and optogenetic approaches with anatomical and genetic techniques for identifying cell populations and pathways, the Brown Lab is defining the synaptic interactions among different classes of cortical neurons and determining how long-range and local inputs are integrated within cortical circuits. In amyotrophic lateral sclerosis, corticospinal and spinal motor neurons progressively degenerate. The Brown Lab is examining how abnormal ...activity within cortical circuits contributes to the selective degeneration of corticospinal motor neurons in an effort to identify new mechanisms for treating this disease. Abnormalities in the organization of cortical circuits and synapses have been identified in genetic and anatomical studies of neuropsychiatric disease. We are interested in the impact these abnormalities have on cortical processing and their contribution to the disordered cognition typical of autism and schizophrenia. view less
-
Dölen Lab
The Dölen lab studies the synaptic and circuit mechanisms that enable social behaviors. We use a variety of techniques including whole cell patch clamp electrophysiology, viral mediated gene transfer, optogenetics, and behavior. We are also interested in understanding how these synaptic and circuit mechanisms are disrupted in autism and schizophrenia, diseases which are characterized by social cognition deficits. More recently we have become interested in the therapeutic potential of psychedelic drugs for diseases like addiction and PTSD that respond to social influence or are aggravated by social injury, We are currently using both transgenic mouse and octopus to model disease.
-
Erwin Lab
Schizophrenia, autism and other neurological disorders are caused by a complex interaction between inherited genetic risk and environmental experiences. The overarching goal of the group are to reveal molecular mechanisms of gene by environment interactions related to altered neural development and liability for brain disorders. Our research uses a hybrid of human stem cell models, post-mortem tissue and computational approaches to interrogate the contribution of epigenetic regulation and somatic mosaicism to brain diseases. Our previous work has demonstrated that the human brain exhibits extensive genetic variability between neurons within the same brain, termed "somatic mosaicism" due to mobile DNA elements which mediate large somatic DNA copy number variants. We study environment-responsive mechanisms and consequences for somatic mosaicism and are discovering the landscape of somatic mosaicism in the brain. We also study the epigenetic regulation of cell specification and activity-d...ependent states within the human dorsal lateral prefrontal cortex and striatum. view more
-
Margaret Daniele Fallin Lab
Work in the Margaret Daniele Fallin Lab focuses on the genetic epidemiology of neuropsychiatric conditions. Our team primarily studies the genetic basis of autism spectrum disorder, Alzheimer’s disease, schizophrenia and bipolar disorder. We also explore the integration of genetic susceptibility and environmental risk. Our current research involves applying genetic epidemiology methods to develop applications and methods for epigenetic epidemiology, with a focus on mental health and development.
Principal Investigator
Department
-
Mikhail Pletnikov Laboratory
The Mikhail Pletnikov Laboratory is interested in the neurobiology of neurodevelopmental diseases such as schizophrenia and autism. The major focus of our laboratory is to evaluate how adverse environmental factors and vulnerable genes interact to affect brain and behavior development. We address these experimental questions by using methods of cell and molecular biology, neuroimmunology, neurochemistry, psychopharmacology and developmental psychobiology. The current projects in our laboratory are: (1) Genetic risk factors in neuron-astrocyte interaction during neurodevelopment, (2) Gene-environment interplay in the pathogenesis of psychiatric conditions, and (3) The neuroimmune interactions in abnormal neurodevelopment
-
Neuroimmunopathology Lab
The research activities of the Neuroimmunopathology Laboratory focus on studies of immunological and molecular mechanisms involved in the pathogenesis of neurological disorders. Our main areas of research include studies of neurological complications of HIV infection and AIDS, multiple sclerosis, transverse myelitis, autism and epilepsy. We seek to explore and identify immunopathological mechanisms associated with neurological disease that may be the target of potential therapeutic interventions. The laboratory collaborates with other researchers and laboratories at Johns Hopkins and other institutions in projects related with studies of the interaction between the immune and central nervous systems in pathological processes leading to neurological dysfunction.
-
Sujatha Kannan Lab
The Sujatha Kannan Lab works to develop therapeutic strategies for preventing perinatal brain injuries from occurring during development. We use a unique combination of nanotechnology, animal model development and in vivo imaging to better understand the mechanism and progression of cellular and metabolic conditions that lead to perinatal brain injury, with a focus on autism and cerebral palsy.
-
The Arking Lab
The Arking Lab studies the genomics of complex human disease, with the primary goal of identifying and characterizing genetics variants that modify risk for human disease. The group has pioneered the use of genome-wide association studies (GWAS), which allow for an unbiased screen of virtually all common genetic variants in the genome. The lab is currently developing improved GWAS methodology, as well as exploring the integration of additional genome level data (RNA expression, DNA methylation, protein expression) to improve the power to identify specific genetic influences of disease.
The Arking Lab is actively involved in researching:
• autism, a childhood neuropsychiatric disorder
• cardiovascular genomics, with a focus on electrophysiology and sudden cardiac death (SCD)
• electrophysiology is the study of the flow of ions in biological tissues
Dan E. Arking, PhD, is an associate professor at the McKusick-Nathans Institute of Genetic Medicine and Department of Medicine, D...ivision of Cardiology, Johns Hopkins University. view more
- 1