Find a Research Lab

Enter a research interest, principal investigator or keyword

Displaying 1 to 23 of 23 results for asthma

Show: 10 · 20 · 50

  1. 1
  • Anderson Lab

    Research in the Anderson laboratory focuses on cellular signaling and ionic mechanisms that cause heart failure, arrhythmias and sudden cardiac death, major public health problems worldwide. Primary focus is on the multifunctional Ca2+ and calmodulin-dependent protein kinase II (CaMKII). The laboratory identified CaMKII as an important pro-arrhythmic and pro-cardiomyopathic signal, and its studies have provided proof of concept evidence motivating active efforts in biotech and the pharmaceutical industry to develop therapeutic CaMKII inhibitory drugs to treat heart failure and arrhythmias.

    Under physiological conditions, CaMKII is important for excitation-contraction coupling and fight or flight increases in heart rate. However, myocardial CaMKII is excessively activated during disease conditions where it contributes to loss of intracellular Ca2+ homeostasis, membrane hyperexcitability, premature cell death, and hypertrophic and inflammatory transcription. These downstream targets a...ppear to contribute coordinately and decisively to heart failure and arrhythmias. Recently, researchers developed evidence that CaMKII also participates in asthma.

    Efforts at the laboratory, funded by grants from the National Institutes of Health, are highly collaborative and involve undergraduate assistants, graduate students, postdoctoral fellows and faculty. Key areas of focus are:
    • Ion channel biology and arrhythmias
    • Cardiac pacemaker physiology and disease
    • Molecular physiology of CaMKII
    • Myocardial and mitochondrial metabolism
    • CaMKII and reactive oxygen species in asthma

    Mark Anderson, MD, is the William Osler Professor of Medicine, the director of the Department of Medicine in the Johns Hopkins University School of Medicine and physician-in-chief of The Johns Hopkins Hospital.
    view less

    Research Areas: heart failure, arrhythmia, cardiovascular diseases, sudden cardiac death

    Lab Website

    Principal Investigator

    Mark Anderson, M.D., Ph.D.

    Department

    Medicine

  • Antoine Azar Lab

    The Antoine Azar Lab conducts research on topics related to primary immunodeficiency diseases, allergies and lung disease. Specifically, we explore the role of primary immunodeficiency in certain difficult-to-treat chronic lung diseases, such as COPD, emphysema and asthma.

    Research Areas: emphysema, immunology, asthma, allergies, lung disease, COPD

    Principal Investigator

    Antoine Azar, M.D.

    Department

    Medicine

  • David Shade Lab

    Areas of research in the David Shade Lab include data-management methods for clinical research, design and conduct of clinical trials, and internet usage for data acquisition and distribution.

    Research Areas: data analysis, asthma, clinical trials, pulmonary physiology

    Principal Investigator

    David Shade, J.D.

    Department

    Medicine

  • Gregory Diette Laboratory

    The Gregory Diette Laboratory studies the epidemiology of lung diseases. Our focus is on asthma, chronic obstructive pulmonary disease (COPD) and environmental causes of lung disease, including allergens and particulate matter.

    Research Areas: epidemiology, asthma, allergies, lung disease, COPD

    Principal Investigator

    Gregory Diette, M.D.

    Department

    Medicine

  • Johns Hopkins University Dermatology, Allergy and Clinical Immunology (DACI) Reference Laboratory

    The mission of the Johns Hopkins University Dermatology, Allergy and Clinical Immunology (DACI) Reference Laboratory is to provide comprehensive, high-quality diagnostic allergy and immunology testing to patients throughout North America with asthma, allergy and immunologic disorders. We offer an extensive menu of laboratory tests that includes allergen-specific IgE measurements to approximately 300 pollen, epidermal, mold spore, mite, food, drug, venom and occupational allergen specificities. We specialize in Hymenoptera (insect sting) venom-specific IgE and IgG antibody measurements. In addition, the DACI Laboratory performs hypersensitivity pneumonitis precipitin panels, serum cotinine, and environmental mold measurements.

    Research Areas: immunology, asthma, allergies, allergens, dermatology

    Lab Website

    Principal Investigator

    Robert Hamilton, M.S., Ph.D.

    Department

    Medicine

  • Kristin Riekert Lab

    Work in the Kristin Riekert Lab focuses on methods for improving health care quality and delivery, particularly among underserved and disadvantaged populations. Our research covers a range of important topics, including health beliefs, treatment adherence, doctor-patient communication, self-management interventions, mobile health initiatives, health disparities and patient-reported outcome methodology. We also work with the National Institutes of Health on multiple intervention trials focused on improving adherence and health outcomes in asthma, chronic kidney disease, cystic fibrosis (CF), sickle cell disease and secondhand smoke reduction.

    Research Areas: health care quality, treatment adherence, cystic fibrosis, patient-provider relationships, chronic illnesses, health disparities

    Principal Investigator

    Kristin Riekert, Ph.D.

    Department

    Medicine

  • Laboratory of Airway Immunity

    We are interested in understanding how innate immune responses regulate lung health. Innate immunity involves ancient, and well-conserved mediators and their actions regulate the balance between homeostasis and pathogenesis. In the lungs, innate immunity play a critical role in response to environmental exposures such as allergen and ambient particulate matter. My lab focuses on how these exposures can promote aberrant mucosal responses that can drive the development of diseases like asthma.

    Research Areas: allergy, type 2 immunity, asthma, particulate matter, allergens, innate immunity

  • Li Gao Lab

    The Li Gao Lab researches functional genomics, molecular genetics and epigenetics of complex cardiopulmonary and allergic diseases, with a focus on translational research applying fundamental genetic insight into the clinical setting. Current research includes implementation of high-throughput technologies in the fields of genome-wide association studies (GWAS), massively parallel sequencing, gene expression analysis, epigenetic mapping and integrative genomics in ongoing research of complex lung diseases and allergic diseases including asthma, atopic dermatitis (AD), pulmonary arterial hypertension, COPD, sepsis and acute lung injury/ARDS; and epigenetic contributions to pulmonary arterial hypertension associated with systemic sclerosis.

    Research Areas: pulmonary arterial hypertension, molecular genetics, cardiopulmonary diseases, asthma, epigenetics, complex lung disease, allergies, genomics, COPD, atopic dermatitis

    Principal Investigator

    Li Gao, M.D., Ph.D.

    Department

    Medicine

  • Machine Biointerface Lab

    Dr. Fridman's research group invents and develops bioelectronics for Neuroengineering and Medical Instrumentation applications. We develop innovative medical technology and we also conduct the necessary biological studies to understand how the technology could be effective and safe for people.

    Our lab is currently focused on developing the "Safe Direct Current Stimulation" technology, or SDCS. Unlike the currently available commercial neural prosthetic devices, such as cochlear implants, pacemakers, or Parkinson's deep brain stimulators that can only excite neurons, SDCS can excite, inhibit, and even sensitize them to input. This new technology opens a door to a wide range of applications that we are currently exploring along with device development: e.g. peripheral nerve stimulation for suppressing neuropathic pain, vestibular nerve stimulation to correct balance disorders, vagal nerve stimulation to suppress an asthma attack, and a host of other neuroprosthetic applications.

    M...edical Instrumentation MouthLab is a "tricorder" device that we invented here in the Machine Biointerface Lab. The device currently obtains all vital signs within 60s: Pulse rate, breathing rate, temperature, blood pressure, blood oxygen saturation, electrocardiogram, and FEV1 (lung function) measurement. Because the device is in the mouth, it has access to saliva and to breath and we are focused now on expanding its capability to obtaining measures of dehydration and biomarkers that could be indicative of a wide range of internal disorders ranging from stress to kidney failure and even lung cancer.
    view more

    Research Areas: medical instruments, bioelectricities, neuroengineering, nerve stimulation

  • Mark Liu Lab

    Research in the Mark Liu Lab explores several areas of pulmonary and respiratory medicine. Our studies primarily deal with allergic inflammation, chronic obstructive pulmonary disease (COPD) and asthma, specifically immunologic responses to asthma. We have worked to develop a microfluidic device with integrated ratiometric oxygen sensors to enable long-term control and monitoring of both chronic and cyclical hypoxia. In addition, we conduct research on topics such as the use of magnetic resonance angiography in evaluating intracranial vascular lesions and tumors as well as treatment of osteoporosis by deep sea water through bone regeneration.

    Research Areas: respiratory system, pulmonary medicine, asthma, COPD, inflammation, hypoxia

    Principal Investigator

    Mark Liu, M.D.

    Department

    Medicine

  • Meredith McCormack Lab

    Research in the Meredith McCormack Lab deals primarily with pulmonary diseases, such as asthma and chronic obstructive pulmonary disease (COPD), and the role of environmental exposures in lung diseases. We have researched the factors that contribute to inner-city asthma, with a focus on how particulate matter air pollution impacts pulmonary function. We are also part of the LIBERATE clinical study, which is focused on patients who experience difficulty breathing and have been diagnosed with severe emphysema. We also have a longstanding interest in the effects of race/ethnicity, poverty and urbanization on nutrition and food allergies.

    Research Areas: emphysema, environmental exposure, asthma, lung disease, COPD, health disparities

    Principal Investigator

    Meredith McCormack, M.D., M.H.S.

    Department

    Medicine

  • Michelle Eakin Lab

    The Michelle Eakin Lab conducts research on behavioral science and adherence and asthma outcomes in inner-city children. Our studies into behavioral science have included exploring the impact of medication adherence on lung health outcomes in patients with cystic fibrosis, disparities in anti-hypertensive medication adherence in adolescents and other key topics. We also investigate methods for improving asthma care and treatment as well as health disparities among various ethnicities, particularly in pediatric patients.

    Research Areas: cystic fibrosis, asthma, behavioral medicine, health disparities

    Principal Investigator

    Michelle Eakin, M.A., Ph.D.

    Department

    Medicine

  • Mitzner Laboratory

    The Mitzner Laboratory studies the physiologic and pathologic basis of lung health and diseases such as emphysema and asthma. We are currently researching why chronic changes in the lung remain for long periods after initial insults have disappeared. Using phenotyping in whole animal models alongside the assessment of the immunologic status of cells and interactive signaling, we examine lung-tissue damage that creates a chronic immunologic response.

    Research Areas: emphysema, phenotyping, asthma, lung disease

  • Nadia Hansel Lab

    Research in the Nadia Hansel Lab investigates the clinical, pathophysiologic and public health aspects of pulmonary diseases, with a focus on asthma and chronic obstructive pulmonary disease (COPD). We have explored how environmental exposures, nutrition and diet, comorbidity and other factors influence the outcomes of diseases such as asthma and COPD.

    Research Areas: airway diseases, immunology, asthma, allergies, lung disease, COPD

    Principal Investigator

    Nadia Hansel, M.D., M.P.H.

    Department

    Medicine

  • Nicola Heller Lab

    Research in the Nicola Heller Lab focuses on the immunobiology of macrophages. Our team explores how these cells impact diseases with an inflammatory element, such as cancer, cardiovascular disease and obesity. Using a variety of techniques, including molecular and cellular biology, biochemistry, mouse models and more, we study the role of IL-4/IL-13 signaling in asthma and allergic disease, as well as the role of alternatively activated macrophages (AAM) in the pathogenesis of allergic inflammation. Currently, we are researching the links between asthma and obesity, with a focus on the roles of gender and race.

    Research Areas: asthma, allergies, immunobiology, inflammation, macrophages

  • Patrick Breysse Lab

    Research in the Patrick Breysse Lab seeks to better understand the biological, chemical and physical factors that can impact a patient’s health. Our team is currently studying the effects of indoor and outdoor air pollution on childhood asthma, respiratory tract infections, chronic obstructive pulmonary disease (COPD) and other respiratory conditions. We also conduct research on secondhand smoke exposure around the world and have participated in a range of health and exposure studies in Peru, Nepal, Mongolia, Columbia and India.

    Research Areas: epidemiology, pollution, asthma, COPD, pediatrics

    Principal Investigator

    Patrick Breysse, M.H.S., Ph.D.

    Department

    Medicine

  • Paul Rothman Lab

    Research in the Paul Rothman Lab has focused on cytokines. We’ve investigated the role these molecules play in the normal development of blood cells as well as the abnormal blood-cell development that leads to leukemia. We’ve also studied the function of cytokines in immune system responses to asthma and allergies.

    Research Areas: leukemia, asthma, allergies, cytokines, immune system

    Lab Website

    Principal Investigator

    Paul Rothman, M.D.

    Department

    Medicine

  • Rasika Mathias Lab

    Research in the Rasika Mathias Lab focuses on the genetics of asthma in people of African ancestry. Our work led to the first genomewide association study of its kind in 2009. Currently, we are analyzing the whole-genome sequence of more than 1,000 people of African ancestry from the Consortium on Asthma among African-ancestry Populations in the Americas (CAAPA). CAAPA’s goal is to use whole-genome sequencing to expand our understanding of how genetic variants affect asthma risk in populations of African ancestry and to provide a public catalog of genetic variation for the scientific community. We’re also involved in the study of coronary artery disease though the GeneSTAR Program, which aims to identify mechanisms of atherogenic vascular diseases and attendant comorbidities.

    Research Areas: heart disease, African Americans, asthma, genomics, health disparities

    Principal Investigator

    Rasika Mathias, Sc.D.

    Department

    Medicine

  • Robert H. Brown Lab

    Work in the Robert H. Brown Lab explores several topics within pulmonary physiology, with a long-term goal of understanding the structural changes in the lungs that lead to the pathophysiology of lung disease. Our core studies examine the structure-function relationship of pulmonary airways and vessels as well as their role in chronic obstructive pulmonary disease (COPD) and reactive airway disease. Recent research has involved studying the mechanisms and treatment of COPD progression, new methods for treating asthma, and lung inflation and airway hyperresponsiveness. We are also exploring the impact of HIV infection on the etiology of lung disease and the pathophysiologic consequences of lung distention.

    Research Areas: asthma, HIV, pulmonary physiology, lung disease, COPD, reactive airway disease

  • Robert Wise Lab

    The Robert Wise Lab conducts clinical trials to study chronic obstructive lung diseases (COPD). We investigate inhaled corticosteroids in patients with mild to moderate COPD and the effectiveness of anti-inflammatories in allowing lung growth in mild to moderate asthmatic children. Our research includes exploring the efficacy of various treatments for asthmatic women who are pregnant and of lung-volume reduction surgery for emphysema patients. We also conduct studies of the clinical epidemiology, pathobiology and treatment of interstitial lung disease in patients with scleroderma.

    Research Areas: critical care medicine, emphysema, scleroderma, pulmonary medicine, asthma, lung-volume reduction surgery, COPD

    Principal Investigator

    Robert Wise, M.D.

    Department

    Medicine

  • Roger Johns Lab

    Investigators in the Roger Johns Lab are examining the molecular mechanisms behind the onset and continuation of chronic pain, particularly neuropathic pain. This work has led to a better understanding of the vast network of molecules at neuronal synapses, particularly the postsynaptic density (PSD), which is key to the propagation of pain signals. We're working to develop new analgesics that interfere with the PSD protein interactions in an effort to better treat patients who suffer from chronic pain.

    Research Areas: neuropathic pain, asthma, neuronal synapses, postsynaptic density, chronic pain

  • Sarbjit Saini Lab

    The research in the Sarbjit Saini Laboratory focuses on IgE receptor biology and IgE receptor-mediated activation of blood basophils and mast cells. We have examined the role of IgE receptor expression and activation in allergic airways disease, anaphylaxis and chronic urticaria. Our research has been supported by the NIH, American Lung Association and the AAAAI. Our current research interests have focused mechanisms of diease in allergic asthma, allergic rhinitis and also translational studies in chronic idiopathic urticaria.

    Research Areas: anaphylaxis, airway diseases, cell biology, asthma, allergies, chronic idiopathic urticaria

    Principal Investigator

    Sarbjit Saini, M.D.

    Department

    Medicine

  • Sleep Apnea Pathogenesis

    Our research laboratory is staffed by a dedicated and experienced team of sleep scientists, fellows, technicians, engineers, and students. Currently, we are focused on the following areas:

    -Novel treatments for sleep apnea using electrical and nerve stimulation and chemogenetic techniques

    -Cardiovascular and metabolic effects of sleep apnea and hypoxia

    -Leptin and its impact on breathing and cardiovascular physiology

    -Sleep disordered breathing at high altitude

    -Dietary impacts on asthma

    Research Areas: hypoxia, sleep apnea

    Lab Website

    Principal Investigator

    Vsevolod Polotsky, M.D., Ph.D.

    Department

    Medicine

  1. 1