Find a Research Lab

Enter a research interest, principal investigator or keyword

Displaying 1 to 7 of 7 results for antibiotics

Show: 10 · 20 · 50

  1. 1
  • David Sack Lab

    Research in the David Sack Lab focuses on enteric infections. Our team has worked to develop laboratory detection methods to better understand the epidemiology of these agents. We also work to create appropriate clinical management strategies, such as antibiotics and rehydration methods, for enteric infections. Our work has included participating in the development of vaccines for a range of bacterial infections, including rotavirus, cholera and enterotoxigenic E. coli.

    Research Areas: epidemiology, international health, cholera, infectious disease, diarrhea, malaria, tuberculosis

    Principal Investigator

    David Sack, M.D.

    Department

    Medicine

  • Eric Nuermberger Lab

    Research in the Eric Nuermberger Lab focuses primarily on experimental chemotherapy for tuberculosis. We use proven murine models of active and latent tuberculosis infection to assess the effectiveness of novel antimicrobials. A key goal is to identify new agents to combine with existing drugs to shorten tuberculosis therapy or enable less frequent drug administration. We're also using a flow-controlled in vitro pharmacodynamic system to better understand the pharmacodynamics of drug efficacy and the selection of drug-resistant mutants during exposure to current agents.

    Research Areas: pharmacodynamics, chemotherapy, infectious disease, antimicrobials, drugs, antibiotics, Streptococcus pneumoniae, pneumonia, tuberculosis

    Principal Investigator

    Eric Nuermberger, M.D.

    Department

    Medicine

  • Frueh Laboratory

    The Frueh Laboratory uses nuclear magnetic resonance (NMR) to study how protein dynamics can be modulated and how active enzymatic systems can be conformed. Non-ribosomal peptide synthetases (NRPS) are large enzymatic systems that biosynthesize secondary metabolites, many of which are used by pharmaceutical scientists to produce drugs such as antibiotics or anticancer agents. Dr. Frueh's laboratory uses NMR to study inter- and intra-domain modifications that occur during the catalytic steps of NRPS. Dr. Frueh and his team are constantly developing new NMR techniques to study these complicated enzymatic systems.

    Research Areas: enzymes, proteomics, imaging, drugs, antibiotics, nuclear magnetic resonance, molecular biology

  • Karakousis Lab

    The Karakousis Lab is primarily focused on understanding the molecular basis of Mycobacterium tuberculosis persistence and antibiotic tolerance. A systems biology-based approach, including the use of several novel in vitro and animal models, in combination with transcriptional, proteomic, genetic, imaging, and computational techniques, is being used to identify host cytokine networks responsible for immunological control of M. tuberculosis growth, as well as M. tuberculosis regulatory and metabolic pathways required for bacillary growth restriction and reactivation. In particular, we are actively investigating the regulatory cascade involved in the mycobacterial stringent response. Another major focus of the lab is the development of host-directed therapies for TB, with the goal of shortening treatment and improving long-term lung function. Additional research interests include the development of novel molecular assays for the rapid diagnosis of latent TB infection and active TB diseas...e, and for the detection of drug resistance. view more

    Research Areas: diagnostics, persistence, infectious disease, Mycobacterium tuberculosis, host-directed therapy, latency, drugs, antibiotics, tuberculosis

    Lab Website

    Principal Investigator

    Petros Karakousis, M.D.

    Department

    Medicine

  • Lamichhane Lab

    Our research focuses on the biology of the peptidoglycan of Mycobacterium tuberculosis, the organism that causes tuberculosis, and Mycobacteroides abscessus, a related bacterium that causes opportunistic infections. We study basic mechanisms associated with peptidoglycan physiology but with an intent to leverage our findings to develop tools that will be useful in the clinic to treat mycobacterial infections.

    Peptidoglycan is the exoskeleton of bacteria that not only provides structural rigidity and cell shape but also several vital physiological functions. Breaching this structure is often lethal to bacteria. We are exploring fundamental mechanisms by which bacteria synthesize and preserve their peptidoglycan. Although our lab uses genetic, biochemical and biophysical approaches to study the peptidoglycan, we pursue questions irrespective of the expertise required to answer those questions. It is through these studies that we identified synergy between two beta-lactam antibiotics a...gainst select mycobacteria. view more

    Research Areas: biochemistry, infectious disease, Mycobacterium tuberculosis, genomics, tuberculosis, RNA

    Lab Website

    Principal Investigator

    Gyanu Lamichhane, Ph.D.

    Department

    Medicine

  • Sara Cosgrove Lab

    The Sara Cosgrove Lab researches how infections with antibiotic-resistant bacteria affect patients. We are interested in the methods needed to make sure patients receive the best possible antibiotic treatment, including the development of tools and programs to promote the rational use of antimicrobials. We also study the epidemiology and management of S. aureus bacteremia.

    Research Areas: epidemiology, antimicrobials, antibiotics, resistant organisms

    Principal Investigator

    Sara Cosgrove, M.D.

    Department

    Medicine

  • Todd Dorman Lab

    Research conducted in the Todd Dorman Lab examines the use of informatics in intensive care settings as it relates to remote patient monitoring, safety and management strategies. Specific areas of interest include the surgical stress response; aminoglycoside antibiotics; fungal infections; renal failure; pharmacokinetic models of drug administration; and ICU triage and its impact on disaster preparedness.

    Research Areas: fungal infections, patient safety, informatics, disaster preparedness, aminoglycoside antibiotics, surgical stress response, ICU, patient monitoring

  1. 1