Find a Research Lab

Enter a research interest, principal investigator or keyword

Displaying 11 to 20 of 30 results for aging

Show: 10 · 20 · 50

  1. 1
  2. 2
  3. 3
  • J. Marie Hardwick Laboratory

    Our research is focused on understanding the basic mechanisms of programmed cell death in disease pathogenesis. Billions of cells die per day in the human body. Like cell division and differentiation, cell death is also critical for normal development and maintenance of healthy tissues. Apoptosis and other forms of cell death are required for trimming excess, expired and damaged cells. Therefore, many genetically programmed cell suicide pathways have evolved to promote long-term survival of species from yeast to humans. Defective cell death programs cause disease states. Insufficient cell death underlies human cancer and autoimmune disease, while excessive cell death underlies human neurological disorders and aging. Of particular interest to our group are the mechanisms by which Bcl-2 family proteins and other factors regulate programmed cell death, particularly in the nervous system, in cancer and in virus infections. Interestingly, cell death regulators also regulate many other cel...lular processes prior to a death stimulus, including neuronal activity, mitochondrial dynamics and energetics. We study these unknown mechanisms.

    We have reported that many insults can trigger cells to activate a cellular death pathway (Nature, 361:739-742, 1993), that several viruses encode proteins to block attempted cell suicide (Proc. Natl. Acad. Sci. 94: 690-694, 1997), that cellular anti-death genes can alter the pathogenesis of virus infections (Nature Med. 5:832-835, 1999) and of genetic diseases (PNAS. 97:13312-7, 2000) reflective of many human disorders. We have shown that anti-apoptotic Bcl-2 family proteins can be converted into killer molecules (Science 278:1966-8, 1997), that Bcl-2 family proteins interact with regulators of caspases and regulators of cell cycle check point activation (Molecular Cell 6:31-40, 2000). In addition, Bcl-2 family proteins have normal physiological roles in regulating mitochondrial fission/fusion and mitochondrial energetics to facilitate neuronal activity in healthy brains.
    view more

    Research Areas: cell death

  • Jochen Steppan Lab

    Research in the Jochen Steppan Lab primarily focused on vascular stiffness related to aging. We are currently researching LOXL2 (lysine-oxidase-like-2), which might be intimately involved in the development or progression of vascular stiffness. We aim to better understand LOXL2's role in the vasculature and hope that this work leads to the characterization of a novel therapeutic target. This is important in the treatment of cardiovascular diseases in the aging population.

    Research Areas: aging, vascular stiffness, cardiovascular diseases

  • Karen Bandeen-Roche Lab

    The Karen Bandeen-Roche Lab explores the application of underlying variable methods in epidemiologic and psychosocial research. Our team seeks to improve the ability to measure key outcomes like functional status and psychological disorders. Our other areas of statistical research include the study of classification and variance structure and multivariate survival analysis. We are deeply invested in the field of gerontology as well as ophthalmology and neurology.

    Research Areas: psychology, epidemiology, ophthalmology, data analysis, aging, biostatistics, gerontology, neurology

    Principal Investigator

    Karen Bandeen-Roche, Ph.D.

    Department

    Medicine

  • Katherine Wilson Lab

    Research in the Wilson Lab focuses on three components of nuclear lamina structure: lamins, LEM-domain proteins (emerin), and BAF.

    These three proteins all bind each other directly, and are collectively required to organize and regulate chromatin, efficiently segregate chromosomes and rebuild nuclear structure after mitosis. Mutations in one or more of these proteins cause a variety of diseases including Emery-Dreifuss muscular dystrophy (EDMD), cardiomyopathy, lipodystrophy and diabetes, and accelerated aging.

    We are examining emerin's role in mechanotransduction, how emerin and lamin A are regulated, and whether misregulation contributes to disease.

    Research Areas: cell biology, Emery-Dreifuss muscular dystrophy (EDMD), accelerated aging, chromatin, diabetes, genomics, emerin, nuclear lamina, lipodystrophy, cardiomyopathy

    Principal Investigator

    Katherine Wilson, Ph.D.

    Department

    Cell Biology

  • Kelly Gebo Lab

    Work in the Kelly Gebo Lab focuses on topics such as evidence-based practice, health utilization, policy generation, health disparities in patient access to health care, HIV/AIDS, aging and hepatitis. As part of the HIV Research Network (HIVRN), our lab gathers clinical and demographic data on HIV-infected patients to help develop a single, nationwide research database. In addition, our ongoing research explores evidence-based practice in relation to the management of hepatitis C as well as HIV/AIDS in mentally ill patients. We also investigate racial and gender disparities in patients who receive highly active antiretroviral therapy.

    Research Areas: Hepatitis, AIDS, HIV, aging, health care policy, evidence-based medicine, health disparities

    Principal Investigator

    Kelly Gebo, M.D., M.P.H.

    Department

    Medicine

  • Kendall Moseley Lab

    Research in the Kendall Moseley Lab is focused on the interplay between type 2 diabetes, aging and osteoporosis. We also study the function of bone stem cells in the regulation of bone remodeling.

    Research Areas: type 2 diabetes, osteoporosis, stem cells, aging

    Principal Investigator

    Kendall Moseley, M.D.

    Department

    Medicine

  • Laura Gitlin Lab

    Research in the Laura Gitlin Lab focuses on aging in place, family caregiving, nonpharmacologic approaches to dementia care and functional disability. We study quality-of-life improvements for people with dementia or functional difficulties and their caregivers, including adaptive aids such as assistive devices and environmental modifications. Other research investigates disparities in mental health in older African Americans undergoing treatment for depression.

    Research Areas: assistive devices, African Americans, depression, aging, family-centered care, evidence-based medicine, dementia, gerontology, health disparities

    Principal Investigator

    Laura Gitlin, M.A., Ph.D.

    Department

    Medicine

  • Neuroimaging and Modulation Laboratory (NIMLAB)

    The neuroimaging and Modulation Laboratory (NIMLAB) investigates neural correlates of cognition and behavior using neuroimaging methods such as functional magnetic resonance imaging (fMRI) and neuromodulation techniques such as transcranial magnetic stimulation (TMS). We are looking in depth at the contributions of the cerebellum and cerebro-cerebellar circuits to cognition; the effects of chronic heavy alcohol consumption on cognition and brain activation underlying cognitive function; how aging in humans affects neural systems that are important for associative learning and stimulus awareness; and the integration of transcranial magnetic stimulation with functional MRI.

    Research Areas: cognition, alcohol, functional magnetic resonance imaging, imaging, aging, neuroscience, neuroimaging, transcranial magnetic stimulation

    Lab Website

    Principal Investigator

    John Desmond, M.S., Ph.D.

    Department

    Neurology

  • Ocular Motor Physiology Laboratory

    Our research is directed toward how the brain controls the movements of the eyes (including eye movements induced by head motion) using studies in normal human beings, patients and experimental animals. The focus is on mechanisms underlying adaptive ocular motor control. More specifically, what are mechanisms by which the brain learns to cope with the changes associated with normal development and aging as well as the damage associated with disease and trauma? How does the brain keep its eye movement reflexes properly calibrated? Our research strategy is to make accurate, quantitative measures of eye movements in response to precisely controlled stimuli and then use the analytical techniques of the control systems engineer to interpret the findings.

    Research areas: 1) learning and compensation for vestibular disturbances that occur either within the labyrinth or more centrally within the brain, 2) the mechanisms by which the brain maintains correct alignment of the eyes to prevent d...iplopia and strabismus, and 3) the role of ocular proprioception in localizing objects in space for accurate eye-hand coordination.
    view more

    Research Areas: diplopia, Labyrinth, eye movement, strabismus, vestibular

  • Paul Christo Lab

    Work in the Paul Jordan Christo Lab is focused on pain management in older adults, thoracic outlet syndrome therapies, spinal chord stimulation and the usage of online education modules for pain education. Recent research has investigated novel therapies for thoracic outlet syndrome (including the use of botulinum toxin), the sexual side effects of chronic opioid therapy and complex regional pain syndrome.

    Research Areas: thoracic outlet syndrome, opioids, aging, spinal cord, pain

  1. 1
  2. 2
  3. 3